Advertisement

Effect of matrix-nanoparticle interactions on recognition of aryldiazonium nanoparticle-imprinted matrices

  • Netta Bruchiel-Spanier
  • Linoy Dery
  • Noam Tal
  • Shahar Dery
  • Elad Gross
  • Daniel Mandler
Research Article
  • 33 Downloads

Abstract

The selective recognition of nanoparticles (NPs) can be achieved by nanoparticle-imprinted matrices (NAIMs), where NPs are imprinted in a matrix followed by their removal to form voids that can reuptake the original NPs. The recognition depends on supramolecular interactions between the matrix and the shell of the NPs, as well as on the geometrical suitability of the imprinted voids to accommodate the NPs. Here, gold NPs stabilized with citrate (AuNPs-cit) were preadsorbed onto a conductive surface followed by electrografting of p-aryldiazonium salts (ADS) with different functional groups. The thickness of the matrix was carefully controlled by altering the scan number. The AuNPs-cit were removed by electrochemical dissolution. The recognition of the NAIMs was determined by the reuptake of the original AuNPs-cit by the imprinted voids. We found that the recognition efficiency is a function of the thickness of the NAIM layer and is sensitive to the chemical structure of the matrix. Specifically, a subtle change of the functional group of the p-aryldiazonium building block, which was varied from an ether to an ester, significantly affected the recognition of the NPs.

Keywords

diazonium salt nanoparticles imprinting electrochemistry focused ion beam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research is supported by the Israeli Ministry of Science and Technology (No. 3-13575). L. D. would like to acknowledge the Israeli Ministry of Science and Technology. S. D. would like to acknowledge the Israeli Ministry of Energy. The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology of the Hebrew University is acknowledged.

Supplementary material

12274_2018_2129_MOESM1_ESM.pdf (1 mb)
Effect of matrix-nanoparticle interactions on recognition of aryldiazonium nanoparticle-imprinted matrices

References

  1. [1]
    Behra, R.; Krug, H. Nanoecotoxicology: Nanoparticles at large. Nat. Nanotechnol. 2008, 3, 253–254.CrossRefGoogle Scholar
  2. [2]
    Colvin, V. L. The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 2003, 21, 1166–1170.CrossRefGoogle Scholar
  3. [3]
    Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles. Small 2008, 4, 26–49.CrossRefGoogle Scholar
  4. [4]
    McCall, M. J. Environmental, health and safety issues: Nanoparticles in the real world. Nat. Nanotechnol. 2011, 6, 613–614.CrossRefGoogle Scholar
  5. [5]
    Sajid, M.; Ilyas, M.; Basheer, C.; Tariq, M.; Daud, M.; Baig, N.; Shehzad, F. Impact of nanoparticles on human and environment: Review of toxicity factors, exposures, control strategies, and future prospects. Environ. Sci. Pollut. Res. 2015, 22, 4122–4143.CrossRefGoogle Scholar
  6. [6]
    Hassellöv, M.; Readman, J. W.; Ranville, J. F.; Tiede, K. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 2008, 17, 344–361.CrossRefGoogle Scholar
  7. [7]
    Pan, Y.; Leifert, A.; Ruau, D.; Neuss, S.; Bornemann, J.; Schmid, G.; Brandau, W.; Simon, U.; Jahnen-Dechent, W. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 2009, 5, 2067–2076.CrossRefGoogle Scholar
  8. [8]
    Griffitt, R. J.; Weil, R.; Hyndman, K. A.; Denslow, N. D.; Powers, K.; Taylor, D.; Barber, D. S. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ. Sci. Technol. 2007, 41, 8178–8186.CrossRefGoogle Scholar
  9. [9]
    Sun, N.; Johnson, J.; Stack, M. S.; Szajko, J.; Sander, C.; Rebuyon, R.; Deatsch, A.; Easton, J.; Tanner, C. E.; Ruggiero, S. T. Nanoparticle analysis of cancer cells by light transmission spectroscopy. Anal. Biochem. 2015, 484, 58–65.CrossRefGoogle Scholar
  10. [10]
    Behzadi, S.; Ghasemi, F.; Ghalkhani, M.; Ashkarran, A. A.; Akbari, S. M.; Pakpour, S.; Hormozi-Nezhad, M. R.; Jamshidi, Z.; Mirsadeghi, S.; Dinarvand, R. et al. Determination of nanoparticles using UV-Vis spectra. Nanoscale 2015, 7, 5134–5139.CrossRefGoogle Scholar
  11. [11]
    Slyusarenko, K.; Abécassis, B.; Davidson, P.; Constantin, D. Morphology of gold nanoparticles determined by full-curve fitting of the light absorption spectrum. Comparison with X-ray scattering and electron microscopy data. Nanoscale 2014, 6, 13527–13534.CrossRefGoogle Scholar
  12. [12]
    Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G. Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem. 2007, 79, 4215–4221.CrossRefGoogle Scholar
  13. [13]
    Jarausch, K.; Leonard, D. N. Three-dimensional electron microscopy of individual nanoparticles. J. Electron Microsc. 2009, 58, 175–183.CrossRefGoogle Scholar
  14. [14]
    Wang, Z. L. Transmission electron microscopy of shapecontrolled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175.CrossRefGoogle Scholar
  15. [15]
    Aleksenskii, A. E.; Shvidchenko, A. V.; Eidel'man, E. D. The applicability of dynamic light scattering to determination of nanoparticle dimensions in sols. Tech. Phys. Lett. 2012, 38, 1049–1052.CrossRefGoogle Scholar
  16. [16]
    Kato, H.; Suzuki, M.; Fujita, K.; Horie, M.; Endoh, S.; Yoshida, Y.; Iwahashi, H.; Takahashi, K.; Nakamura, A.; Kinugasa, S. Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment. Toxicol. in Vitro 2009, 23, 927–934.CrossRefGoogle Scholar
  17. [17]
    Murdock, R. C.; Braydich-Stolle, L.; Schrand, A. M.; Schlager, J. J.; Hussain, S. M. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci. 2008, 101, 239–253.CrossRefGoogle Scholar
  18. [18]
    Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.CrossRefGoogle Scholar
  19. [19]
    Tschulik, K.; Haddou, B.; Omanović, D.; Rees, N. V.; Compton, R. G. Coulometric sizing of nanoparticles: Cathodic and anodic impact experiments open two independent routes to electrochemical sizing of Fe3O4 nanoparticles. Nano Res. 2013, 6, 836–841.CrossRefGoogle Scholar
  20. [20]
    Zhou, Y.-G.; Rees, N. V.; Compton, R. G. The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew. Chem. 2011, 123, 4305–4307.CrossRefGoogle Scholar
  21. [21]
    Henriquez, R. R.; Ito, T.; Sun, L.; Crooks, R. M. The resurgence of Coulter counting for analyzing nanoscale objects. Analyst 2004, 129, 478–482.CrossRefGoogle Scholar
  22. [22]
    Xiao, X. Y.; Bard, A. J. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 2007, 129, 9610–9612.CrossRefGoogle Scholar
  23. [23]
    Zhou, Y.-G.; Rees, N. V.; Compton, R. G. The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew. Chem., Int. Ed. 2011, 50, 4219–4221.CrossRefGoogle Scholar
  24. [24]
    Attota, R.; Kavuri, P. P.; Kang, H.; Kasica, R.; Chen, L. Nanoparticle size determination using optical microscopes. Appl. Phys. Lett. 2014, 105, 163105.CrossRefGoogle Scholar
  25. [25]
    Cascio, C.; Gilliland, D.; Rossi, F.; Calzolai, L.; Contado, C. Critical experimental evaluation of key methods to detect, size and quantify nanoparticulate silver. Anal. Chem. 2014, 86, 12143–12151.CrossRefGoogle Scholar
  26. [26]
    Chon, B.; Briggman, K.; Hwang, J. Single molecule confocal fluorescence lifetime correlation spectroscopy for accurate nanoparticle size determination. Phys. Chem. Chem. Phys. 2014, 16, 13418–13425.CrossRefGoogle Scholar
  27. [27]
    Gomez, M. V.; Guerra, J.; Myers, V. S.; Crooks, R. M.; Velders, A. H. Nanoparticle size determination by 1H NMR spectroscopy. J. Am. Chem. Soc. 2009, 131, 14634–14635.CrossRefGoogle Scholar
  28. [28]
    McKenzie, L. C.; Haben, P. M.; Kevan, S. D.; Hutchison, J. E. Determining nanoparticle size in real time by small-angle X-ray scattering in a microscale flow system. J. Phys. Chem. C 2010, 114, 22055–22063.CrossRefGoogle Scholar
  29. [29]
    Toh, H. S.; Compton, R. G. “Nano-impacts”: An electrochemical technique for nanoparticle sizing in optically opaque solutions. ChemistryOpen 2015, 4, 261–263.CrossRefGoogle Scholar
  30. [30]
    Fang, Y. M.; Wang, H.; Yu, H.; Liu, X. W.; Wang, W.; Chen, H. Y.; Tao, N. J. Plasmonic imaging of electrochemical reactions of single nanoparticles. Acc. Chem. Res. 2016, 49, 2614–2624.CrossRefGoogle Scholar
  31. [31]
    Qiu, D. F.; Wang, S.; Zheng, Y. Q.; Deng, Z. X. One at a time: Counting single-nanoparticle/electrode collisions for accurate particle sizing by overcoming the instability of gold nanoparticles under electrolytic conditions. Nanotechnology 2013, 24, 505707.CrossRefGoogle Scholar
  32. [32]
    Wang, D. P.; Yordanov, S.; Paroor, H. M.; Mukhopadhyay, A.; Li, C. Y.; Butt, H.-J.; Koynov, K. Probing diffusion of single nanoparticles at water-oil interfaces. Small 2011, 7, 3502–3507.CrossRefGoogle Scholar
  33. [33]
    Bruchiel-Spanier, N.; Mandler, D. Nanoparticle-imprinted polymers: Shell-selective recognition of Au nanoparticles by imprinting using the Langmuir–Blodgett method. ChemElectroChem 2015, 2, 795–802.CrossRefGoogle Scholar
  34. [34]
    Hitrik, M.; Pisman, Y.; Wittstock, G.; Mandler, D. Speciation of nanoscale objects by nanoparticle imprinted matrices. Nanoscale 2016, 8, 13934–13943.CrossRefGoogle Scholar
  35. [35]
    Kraus-Ophir, S.; Witt, J.; Wittstock, G.; Mandler, D. Nanoparticle-imprinted polymers for size-selective recognition of nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 294–298.CrossRefGoogle Scholar
  36. [36]
    Witt, J.; Mandler, D.; Wittstock, G. Nanoparticle-imprinted matrices as sensing layers for size-selective recognition of silver nanoparticles. ChemElectroChem 2016, 3, 2116–2124.CrossRefGoogle Scholar
  37. [37]
    Alexander, C.; Andersson, H. S.; Andersson, L. I.; Ansell, R. J.; Kirsch, N.; Nicholls, I. A.; O' Mahony, J.; Whitcombe, M. J. Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. J. Mol. Recognit. 2006, 19, 106–180.CrossRefGoogle Scholar
  38. [38]
    Haupt, K. Molecularly imprinted polymers in analytical chemistry. Analyst 2001, 126, 747–756.CrossRefGoogle Scholar
  39. [39]
    Pichon, V.; Chapuis-Hugon, F. Role of molecularly imprinted polymers for selective determination of environmental pollutants—A review. Anal. Chim. Acta 2008, 622, 48–61.CrossRefGoogle Scholar
  40. [40]
    Tokonami, S.; Shiigi, H.; Nagaoka, T. Review: Micro- and nanosized molecularly imprinted polymers for high-throughput analytical applications. Anal. Chim. Acta 2009, 641, 7–13.CrossRefGoogle Scholar
  41. [41]
    Birnbaumer, G. M.; Lieberzeit, P. A.; Richter, L.; Schirhagl, R.; Milnera, M.; Dickert, F. L.; Bailey, A.; Ertl, P. Detection of viruses with molecularly imprinted polymers integrated on a microfluidic biochip using contact-less dielectric microsensors. Lab Chip 2009, 9, 3549–3556.CrossRefGoogle Scholar
  42. [42]
    Cai, W.; Li, H.-H.; Lu, Z.-X.; Collinson, M. M. Bacteria assisted protein imprinting in sol-gel derived films. Analyst 2018, 143, 555–563.CrossRefGoogle Scholar
  43. [43]
    Cutivet, A.; Schembri, C.; Kovensky, J.; Haupt, K. Molecularly imprinted microgels as enzyme inhibitors. J. Am. Chem. Soc. 2009, 131, 14699–14702.CrossRefGoogle Scholar
  44. [44]
    Mooste, M.; Kibena, E.; Kozlova, J.; Marandi, M.; Matisen, L.; Niilisk, A.; Sammelselg, V.; Tammeveski, K. Electrografting and morphological studies of chemical vapour deposition grown graphene sheets modified by electroreduction of aryldiazonium salts. Electrochim. Acta 2015, 161, 195–204.CrossRefGoogle Scholar
  45. [45]
    Mahouche-Chergui, S.; Gam-Derouich, S.; Mangeney, C.; Chehimi, M. M. Aryl diazonium salts: A new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem. Soc. Rev. 2011, 40, 4143–4166.CrossRefGoogle Scholar
  46. [46]
    Menanteau, T.; Dias, M.; Levillain, E.; Downard, A. J.; Breton, T. Electrografting via diazonium chemistry: The key role of the aryl substituent in the layer growth mechanism. J. Phys. Chem. C 2016, 120, 4423–4429.CrossRefGoogle Scholar
  47. [47]
    Trusova, M. E.; Kutonova, K. V.; Kurtukov, V. V.; Filimonov, V. D.; Postnikov, P. S. Arenediazonium salts transformations in water media: Coming round to origins. Resource-Efficient Technologies 2016, 2, 36–42.CrossRefGoogle Scholar
  48. [48]
    Saby, C.; Ortiz, B.; Champagne, G. Y.; Bélanger, D. Electrochemical modification of glassy carbon electrode using aromatic diazonium salts. 1. Blocking effect of 4-nitrophenyl and 4-carboxyphenyl groups. Langmuir 1997, 13, 6805–6813.CrossRefGoogle Scholar
  49. [49]
    Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Netta Bruchiel-Spanier
    • 1
  • Linoy Dery
    • 1
  • Noam Tal
    • 1
  • Shahar Dery
    • 1
  • Elad Gross
    • 1
  • Daniel Mandler
    • 1
  1. 1.Institute of ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations