Advertisement

Nano Research

, Volume 11, Issue 11, pp 5769–5786 | Cite as

Polymer nanoparticles as adjuvants in cancer immunotherapy

  • Shengxian Li
  • Xiangru Feng
  • Jixue Wang
  • Liang He
  • Chunxi Wang
  • Jianxun Ding
  • Xuesi Chen
Review Article
  • 120 Downloads

Abstract

Immunotherapy is a promising strategy to inhibit cancer progression via activation of the immune system. In immunotherapy, adjuvants as immunologic stimulants or delivery systems play a critical role in inducing the antitumor immune response and decreasing the side effects of immune stimulants. Polymer nanoparticles have attracted increasing attention as an indispensable component of immunotherapy, owing to their favorable properties, such as excellent biocompatibility and biodegradability, flexible size, high activity as immune stimulants, large surface area for binding multivalent immune ligands, and high loading capacity for immune-related components. In cancer immunotherapy, polymer nanoparticles can protect cargo from the surrounding milieu, deliver the antigens and immunostimulatory molecules to antigen-presenting cells, or stimulate robust T cell response. This review summarizes the current advancements in polymer nanoparticle adjuvants for cancer immunotherapy and predicts their prospects in fundamental and clinical studies.

Keywords

polymer nanoparticle adjuvant drug delivery immunotherapy cancer treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 51673190, 51603204, 51673187, 51773083, 51503076, and 51520105004) and the Science and Technology Development Program of Jilin Province (Nos. 20160204015SF and 20160204018SF).

References

  1. [1]
    Neves, H.; Kwok, H. F. Recent advances in the field of anti-cancer immunotherapy. BBA Clin. 2015, 3, 280–288.Google Scholar
  2. [2]
    Banday, A. H.; Jeelani, S.; Hruby, V. J. Cancer vaccine adjuvants-recent clinical progress and future perspectives. Immunopharmacol. Immunotoxicol. 2015, 37, 1–11.Google Scholar
  3. [3]
    Sun, B. B.; Xia, T. Nanomaterial-based vaccine adjuvants. J. Mater. Chem. B 2016, 4, 5496–5509.Google Scholar
  4. [4]
    Serda, R. E. Particle platforms for cancer immunotherapy. Int. J. Nanomedicine 2013, 8, 1683–1696.Google Scholar
  5. [5]
    O’Hagan, D. T.; Fox, C. B. New generation adjuvants–From empiricism to rational design. Vaccine 2015, 33, B14–B20.Google Scholar
  6. [6]
    Töpfer, E.; Boraschi, D.; Italiani, P. Innate immune memory: The latest frontier of adjuvanticity. J. Immunol. Res. 2015, 2015, 478408.Google Scholar
  7. [7]
    Brito, L. A.; O’Hagan, D. T. Designing and building the next generation of improved vaccine adjuvants. J. Control. Release 2014, 190, 563–579.Google Scholar
  8. [8]
    Bolhassani, A.; Javanzad, S.; Saleh, T.; Hashemi, M.; Aghasadeghi, M. R.; Sadat, S. M. Polymeric nanoparticles: Potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum. Vaccines Immunother. 2014, 10, 321–332.Google Scholar
  9. [9]
    Reddy, S. T.; Rehor, A.; Schmoekel, H. G.; Hubbell, J. A.; Swartz, M. A. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control. Release 2006, 112, 26–34.Google Scholar
  10. [10]
    Kumar, S.; Kesharwani, S. S.; Kuppast, B.; Bakkari, M. A.; Tummala, H. Pathogen-mimicking vaccine delivery system designed with a bioactive polymer (inulin acetate) for robust humoral and cellular immune responses. J. Control. Release 2017, 261, 263–274.Google Scholar
  11. [11]
    Kumar, S.; Kesharwani, S. S.; Kuppast, B.; Rajput, M.; Bakkari, M. A.; Tummala, H. Discovery of inulin acetate as a novel immune-active polymer and vaccine adjuvant: Synthesis, material characterization, and biological evaluation as a toll-like receptor-4 agonist. J. Mater. Chem. B 2016, 4, 7950–7960.Google Scholar
  12. [12]
    Tukulula, M.; Hayeshi, R.; Fonteh, P.; Meyer, D.; Ndamase, A.; Madziva, M. T.; Khumalo, V.; Labuschagne, P.; Naicker, B.; Swai, H. et al. Curdlan-conjugated PLGA nanoparticles possess macrophage stimulant activity and drug delivery capabilities. Pharm. Res. 2015, 32, 2713–2726.Google Scholar
  13. [13]
    Li, X. S.; Min, M.; Du, N.; Gu, Y.; Hode, T.; Naylor, M.; Chen, D. J.; Nordquist, R. E.; Chen, W. R. Chitin, chitosan, and glycated chitosan regulate immune responses: The novel adjuvants for cancer vaccine. Clin. Dev. Immunol. 2013, 2013, 387023.Google Scholar
  14. [14]
    Matera, L. The choice of the antigen in the dendritic cell-based vaccine therapy for prostate cancer. Cancer Treat. Rev. 2010, 36, 131–141.Google Scholar
  15. [15]
    Coumes, F.; Huang, C. Y.; Huang, C. H.; Coudane, J.; Domurado, D.; Li, S. M.; Darcos, V.; Huang, M. H. Design and development of immunomodulatory antigen delivery systems based on peptide/PEG–PLA conjugate for tuning immunity. Biomacromolecules 2015, 16, 3666–3673.Google Scholar
  16. [16]
    Silva, J. M.; Videira, M.; Gaspar, R.; Préat, V.; Florindo, H. F. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J. Control. Release 2013, 168, 179–199.Google Scholar
  17. [17]
    Kim, J.; Wilson, D. R.; Zamboni, C. G.; Green, J. J. Targeted polymeric nanoparticles for cancer gene therapy. J. Drug Target. 2015, 23, 627–641.Google Scholar
  18. [18]
    Furugaki, K.; Cui, L.; Kunisawa, Y.; Osada, K.; Shinkai, K.; Tanaka, M.; Kataoka, K.; Nakano, K. Intraperitoneal administration of a tumor-associated antigen SART3, CD40L, and GM-CSF gene-loaded polyplex micelle elicits a vaccine effect in mouse tumor models. PLoS ONE 2014, 9, e101854.Google Scholar
  19. [19]
    Joshi, V. B.; Geary, S. M.; Gross, B. P.; Wongrakpanich, A.; Norian, L. A.; Salem, A. K. Tumor lysate-loaded biodegradable microparticles as cancer vaccines. Expert Rev. Vaccines 2014, 13, 9–15.Google Scholar
  20. [20]
    Iranpour, S.; Nejati, V.; Delirezh, N.; Biparva, P.; Shirian, S. Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens. J. Exp. Clin. Cancer Res. 2016, 35, 168.Google Scholar
  21. [21]
    Hanlon, D. J.; Aldo, P. B.; Devine, L.; Alvero, A. B.; Engberg, A. K.; Edelson, R.; Mor, G. Enhanced stimulation of antiovarian cancer CD8+ T cells by dendritic cells loaded with nanoparticle encapsulated tumor antigen. Am. J. Reprod. Immunol. 2011, 65, 597–609.Google Scholar
  22. [22]
    Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193.Google Scholar
  23. [23]
    Chen, Z.; Zhao, P. F.; Luo, Z. Y.; Zheng, M. B.; Tian, H.; Gong, P.; Gao, G. H.; Pan, H.; Liu, L. L.; Ma, A. Q. et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 2016, 10, 10049–10057.Google Scholar
  24. [24]
    Seth, A.; Heo, M. B.; Lim, Y. T. Poly(γ-glutamic acid) based combination of water-insoluble paclitaxel and TLR7 agonist for chemo-immunotherapy. Biomaterials 2014, 35, 7992–8001.Google Scholar
  25. [25]
    He, C. B.; Duan, X. P.; Guo, N. N.; Chan, C.; Poon, C.; Weichselbaum, R. R.; Lin, W. B. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat. Commun. 2016, 7, 12499.Google Scholar
  26. [26]
    Min, Y. Z.; Roche, K. C.; Tian, S. M.; Eblan, M. J.; McKinnon, K. P.; Caster, J. M.; Chai, S. J.; Herring, L. E.; Zhang, L. E.; Zhang, T. et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 877–882.Google Scholar
  27. [27]
    Westdorp, H.; Sköld, A. E.; Snijer, B. A.; Franik, S.; Mulder, S. F.; Major, P. P.; Foley, R.; Gerritsen, W. R.; de Vries, I. J. Immunotherapy for prostate cancer: Lessons from responses to tumor-associated antigens. Front. Immunol. 2014, 5, 191.Google Scholar
  28. [28]
    Toyota, H.; Yanase, N.; Yoshimoto, T.; Harada, M.; Kato, Y.; Mizuguchi, J. Vaccination with OVA-bound nanoparticles encapsulating IL-7 inhibits the growth of OVA-expressing E.G7 tumor cells in vivo. Oncol. Rep. 2015, 33, 292–296.Google Scholar
  29. [29]
    Shin, J. M.; Oh, S. J.; Kwon, S.; Deepagan, V. G.; Lee, M.; Song, S. H.; Lee, H. J.; Kim, S.; Song, K. H.; Kim, T. W. et al. A PEGylated hyaluronic acid conjugate for targeted cancer immunotherapy. J. Control. Release 2017, 267, 181–190.Google Scholar
  30. [30]
    Yoshizaki, Y.; Yuba, E.; Sakaguchi, N.; Koiwai, K.; Harada, A.; Kono, K. Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy. Biomaterials 2014, 35, 8186–8196.Google Scholar
  31. [31]
    Shen, H.; Ackerman, A. L.; Cody, V.; Giodini, A.; Hinson, E. R.; Cresswell, P.; Edelson, R. L.; Saltzman, W. M.; Hanlon, D. J. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 2006, 117, 78–88.Google Scholar
  32. [32]
    Hamdy, S.; Molavi, O.; Ma, Z. S.; Haddadi, A.; Alshamsan, A.; Gobti, Z.; Elhasi, S.; Samuel, J.; Lavasanifar, A. Co-delivery of cancer-associated antigen and toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 2008, 26, 5046–5057.Google Scholar
  33. [33]
    Zhang, Z. P.; Tongchusak, S.; Mizukami, Y.; Kang, Y. J.; Ioji, T.; Touma, M.; Reinhold, B.; Keskin, D. B.; Reinherz, E. L.; Sasada, T. Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 2011, 32, 3666–3378.Google Scholar
  34. [34]
    Hashimoto, D.; Miller, J.; Merad, M. Dendritic cell and macrophage heterogeneity in vivo. Immunity 2011, 35, 323–335.Google Scholar
  35. [35]
    Palucka, K.; Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 2012, 12, 265–277.Google Scholar
  36. [36]
    Liu, K.; Nussenzweig, M. C. Origin and development of dendritic cells. Immunol. Rev. 2010, 234, 45–54.Google Scholar
  37. [37]
    Edwards, A. D.; Diebold, S. S.; Slack, E.; Tomizawa, H.; Hemmi, H.; Kaisho, T.; Akira, S. Toll-like receptor expression in murine DC subsets: Lack of TLR7 expression by CD8α+ DC correlates with unresponsiveness to imidazoquinolines. Eur. J. Immunol. 2003, 33, 827–833.Google Scholar
  38. [38]
    Barton, G. M.; Kagan, J. C. A cell biological view of toll-like receptor function: Regulation through compartmentalization. Nat. Rev. Immunol. 2009, 9, 535–542.Google Scholar
  39. [39]
    Rajagopal, D.; Paturel, C.; Morel, Y.; Uematsu, S.; Akira, S.; Diebold, S. S. Plasmacytoid dendritic cell-derived type I interferon is crucial for the adjuvant activity of toll-like receptor 7 agonists. Blood 2010, 115, 1949–1957.Google Scholar
  40. [40]
    Akira, S.; Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 2004, 4, 499–511.Google Scholar
  41. [41]
    Xu, J.; Xu, L. G.; Wang, C. Y.; Yang, R.; Zhuang, Q.; Han, X.; Dong, Z. L.; Zhu, W. W.; Peng, R.; Liu, Z. Near-infraredtriggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano 2017, 11, 4463–4474.Google Scholar
  42. [42]
    Cheng, Y. S.; Xu, F. Anticancer function of polyinosinicpolycytidylic acid. Cancer Biol. Ther. 2010, 10, 1219–1223.Google Scholar
  43. [43]
    Takemura, R.; Takaki, H.; Okada, S.; Shime, H.; Akazawa, T.; Oshiumi, H.; Matsumoto, M.; Teshima, T.; Seya, T. PolyI:C-induced, TLR3/RIP3-dependent necroptosis backs up immune effector-mediated tumor elimination in vivo. Cancer Immunol. Res. 2015, 3, 902–914.Google Scholar
  44. [44]
    Fujimura, T.; Nakagawa, S.; Ohtani, T.; Ito, Y.; Aiba, S. Inhibitory effect of the polyinosinic-polycytidylic acid/cationic liposome on the progression of murine B16F10 melanoma. Eur. J. Immunol. 2006, 36, 3371–3380.Google Scholar
  45. [45]
    Peine, K. J.; Bachelder, E. M.; Vangundy, Z.; Papenfuss, T.; Brackman, D. J.; Gallovic, M. D.; Schully, K.; Pesce, J.; Keane-Myers, A.; Ainslie, K. M. Efficient delivery of the toll-like receptor agonists polyinosinic: Polycytidylic acid and CpG to macrophages by acetalated dextran microparticles. Mol. Pharmaceutics 2013, 10, 2849–2857.Google Scholar
  46. [46]
    Luo, Z. C.; Wang, C.; Yi, H. Q.; Li, P.; Pan, H.; Liu, L. L.; Cai, L. T.; Ma, Y. F. Nanovaccine loaded with poly I:C and SATA3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo. Biomaterials 2015, 38, 50–60.Google Scholar
  47. [47]
    Sarti, F.; Perera, G.; Hintzen, F.; Kotti, K.; Karageorgiou, V.; Kammona, O.; Kiparissides, C.; Bernkop-Schnurch, A. In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials 2011, 32, 4052–4057.Google Scholar
  48. [48]
    Hamdy, S.; Elamanchili, P.; Alshamsan, A.; Molavi, O.; Satou, T.; Samuel, J. Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D, L-lactic-co-glycolic acid) nanoparticles. J. Biomed. Mater. Res. 2007, 81A, 652–662.Google Scholar
  49. [49]
    Rizwan, S. B.; McBurney, W. T.; Young, K.; Hanley, T.; Boyd, B. J.; Rades, T.; Hook, S. Cubosomes containing the adjuvants imiquimod and monophosphoryl lipid A stimulate robust cellular and humoral immune responses. J. Control. Release 2013, 165, 16–21.Google Scholar
  50. [50]
    Lee, S.; Margolin, K. Cytokines in cancer immunotherapy. Cancers 2011, 3, 3856–3893.Google Scholar
  51. [51]
    Hu, X. M.; Wu, T. T.; Bao, Y. L.; Zhang, Z. P. Nanotechnology based therapeutic modality to boost antitumor immunity and collapse tumor defense. J. Control. Release 2017, 256, 26–45.Google Scholar
  52. [52]
    Grace, M.; Youngster, S.; Gitlin, G.; Sydor, W.; Xie, L.; Westreich, L.; Jacobs, S.; Brassard, D.; Bausch, J.; Bordens, R. Structural and biologic characterization of PEGylated recombinant IFN-α 2b. J. Interferon Cytokine Res. 2001, 21, 1103–1115.Google Scholar
  53. [53]
    Bukowski, R.; Ernstoff, M. S.; Gore, M. E.; Nemunaitis, J. J.; Amato, R.; Gupta, S. K.; Tendler, C. L. PEGylated interferon alfa-2b treatment for patients with solid tumors: A phase I/II study. J. Clin. Oncol. 2002, 20, 3841–3849.Google Scholar
  54. [54]
    Vicent, M. J.; Duncan, R. Polymer conjugates: Nanosized medicines for treating cancer. Trends Biotechnol. 2006, 24, 39–47.Google Scholar
  55. [55]
    Dranoff, G. GM-CSF-based cancer vaccines. Immunol. Rev. 2002, 188, 147–154.Google Scholar
  56. [56]
    Nguyen, C. L.; Bui, J. T.; Demcheva, M.; Vournakis, J. N.; Cole, D. J.; Gillanders, W. E. Sustained release of granulocytemacrophage colony-stimulating factor from a modular peptide-based cancer vaccine alters vaccine microenvironment and enhances the antigen-specific T-cell response. J. Immunother. 2001, 24, 420–429.Google Scholar
  57. [57]
    Liu, S. Y.; Wei, W.; Yue, H.; Ni, D. Z.; Yue, Z. G.; Wang, S.; Fu, Q.; Wang, Y. Q.; Ma, G. H.; Su, Z. G. Nanoparticlesbased multi-adjuvant whole cell tumor vaccine for cancer immunotherapy. Biomaterials 2013, 34, 8291–8300.Google Scholar
  58. [58]
    Bencherif, S. A.; Warren Sands, R.; Ali, O. A.; Li, W. A.; Lewin, S. A.; Braschler, T. M.; Shih, T. Y.; Verbeke, C. S.; Bhatta, D.; Dranoff, G. et al. Injectable cryogel-based whole-cell cancer vaccines. Nat. Commun. 2015, 6, 7556.Google Scholar
  59. [59]
    Klinman, D. M.; Currie, D.; Gursel, I.; Verthelyi, D. Use of CpG oligodeoxynucleotides as immune adjuvants. Immunol. Rev. 2004, 199, 201–216.Google Scholar
  60. [60]
    Krieg, A. M. Immune effects and mechanisms of action of CpG motifs. Vaccine 2000, 19, 618–622.Google Scholar
  61. [61]
    Klinman, D. M. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol. 2004, 4, 249–259.Google Scholar
  62. [62]
    Nikitczuk, K. P.; Schloss, R. S.; Yarmush, M. L.; Lattime, E. C. PLGA-polymer encapsulating tumor antigen and CpG DNA administered into the tumor microenvironment elicits a systemic antigen-specific IFN-γ response and enhances survival. J. Cancer Ther. 2013, 4, 280–290.Google Scholar
  63. [63]
    Kapadia, C. H.; Tian, S. M.; Perry, J. L.; Luft, J. C.; DeSimone, J. M. Reduction sensitive PEG hydrogels for codelivery of antigen and adjuvant to induce potent CTLs. Mol. Pharmaceutics 2016, 13, 3381–3394.Google Scholar
  64. [64]
    Ali, O. A.; Lewin, S. A.; Dranoff, G.; Mooney, D. J. Vaccines combined with immune checkpoint antibodies promote cytotoxic T-cell activity and tumor eradication. Cancer Immunol. Res. 2016, 4, 95–100.Google Scholar
  65. [65]
    Mueller, M.; Reichardt, W.; Koerner, J.; Groettrup, M. Coencapsulation of tumor lysate and CpG-ODN in PLGAmicrospheres enables successful immunotherapy of prostate carcinoma in TRAMP mice. J. Control. Release 2012, 162, 159–166.Google Scholar
  66. [66]
    Erdoğar, N.; Iskit, A. B.; Eroğlu, H.; Sargon, M. F.; Mungan, N.; Bilensoy, E. Antitumor efficacy of bacillus calmette-guerin loaded cationic nanoparticles for intravesical immunotherapy of bladder tumor induced rat model. J. Nanosci. Nanotechnol. 2015, 15, 10156–10164.Google Scholar
  67. [67]
    Tsuji, S.; Matsumoto, M.; Takeuchi, O.; Akira, S.; Azuma, I.; Hayashi, A.; Toyoshima, K.; Seya, T. Maturation of human dendritic cells by cell wall skeleton of mycobacterium bovis bacillus calmette-guerin: Involvement of toll-like receptors. Infect. Immun. 2000, 68, 6883–6890.Google Scholar
  68. [68]
    Miyazaki, J.; Nishiyama, H.; Yano, I.; Nakaya, A.; Kohama, H.; Kawai, K.; Joraku, A.; Nakamura, T.; Harashima, H.; Akaza, H. The therapeutic effects of R8-liposome-BCG-CWS on BBN-induced rat urinary bladder carcinoma. Anticancer Res. 2011, 31, 2065–2071.Google Scholar
  69. [69]
    Nakamura, T.; Fukiage, M.; Higuchi, M.; Nakaya, A.; Yano, I.; Miyazaki, J.; Nishiyama, H.; Akaza, H.; Ito, T.; Hosokawa, H. et al. Nanoparticulation of BCG-CWS for application to bladder cancer therapy. J. Control. Release 2014, 176, 44–53.Google Scholar
  70. [70]
    Kershaw, M. H.; Westwood, J. A.; Darcy, P. K. Geneengineered T cells for cancer therapy. Nat. Rev. Cancer 2013, 13, 525–541.Google Scholar
  71. [71]
    Littman, D. R. Releasing the brakes on cancer immunotherapy. Cell 2015, 162, 1186–1190.Google Scholar
  72. [72]
    Topalian, S. L.; Taube, J. M.; Anders, R. A.; Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 2016, 16, 275–287.Google Scholar
  73. [73]
    Sharma, R.; Di Dalmazi, G.; Caturegli, P. Exacerbation of autoimmune thyroiditis by CTLA-4 blockade: A role for IFN-γ-induced indoleamine 2, 3-dioxygenase. Thyroid 2016, 26, 1117–1124.Google Scholar
  74. [74]
    Rahimian, S.; Fransen, M. F.; Kleinovink, J. W.; Amidi, M.; Ossendorp, F.; Hennink, W. E. Polymeric microparticles for sustained and local delivery of antiCD40 and antiCTLA-4 in immunotherapy of cancer. Biomaterials 2015, 61, 33–40.Google Scholar
  75. [75]
    Zhang, L.; Wang, L. M.; Shahzad, K. A.; Xu, T.; Wan, X.; Pei, W. Y.; Shen, C. L. Paracrine release of IL-2 and anti-CTLA-4 enhances the ability of artificial polymer antigen-presenting cells to expand antigen-specific T cells and inhibit tumor growth in a mouse model. Cancer Immunol. Immunother. 2017, 66, 1229–1241.Google Scholar
  76. [76]
    Fife, B. T.; Pauken, K. E.; Eagar, T. N.; Obu, T.; Wu, J.; Tang, Q.; Azuma, M.; Krummel, M. F.; Bluestone, J. A. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR–induced stop signal. Nat. Immunol. 2009, 10, 1185–1192.Google Scholar
  77. [77]
    Mahoney, K. M.; Rennert, P. D.; Freeman, G. J. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 2015, 14, 561–584.Google Scholar
  78. [78]
    Wang, C.; Ye, Y. Q.; Hochu, G. M.; Sadeghifar, H.; Gu, Z. Enhanced cancer immunotherapy by microneedle patchassisted delivery of anti-PD1 antibody. Nano Lett. 2016, 16, 2334–2340.Google Scholar
  79. [79]
    Ye, Y. Q.; Wang, J. Q.; Hu, Q. Y.; Hochu, G. M.; Xin, H. L.; Wang, C.; Gu, Z. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano 2016, 10, 8956–8963.Google Scholar
  80. [80]
    Reynolds, A.; Leake, D.; Boese, Q.; Scaringe, S.; Marshall, W. S.; Khvorova, A. Rational siRNA design for RNA interference. Nat. Biotechnol. 2004, 22, 326–330.Google Scholar
  81. [81]
    Selvam, C.; Mutisya, D.; Prakash, S.; Ranganna, K.; Thilagavathi, R. Therapeutic potential of chemically modified siRNA: Recent trends. Chem. Biol. Drug Des. 2017, 90, 665–678.Google Scholar
  82. [82]
    Nishida, H.; Matsumoto, Y.; Kawana, K.; Christie, R. J.; Naito, M.; Kim, B. S.; Toh, K.; Min, H. S.; Yi, Y.; Matsumoto, Y. et al. Systemic delivery of siRNA by actively targeted polyion complex micelles for silencing the E6 and E7 human papillomavirus oncogenes. J. Control. Release 2016, 231, 29–37.Google Scholar
  83. [83]
    Sarett, S. M.; Werfel, T. A.; Chandra, I.; Jackson, M. A.; Kavanaugh, T. E.; Hattaway, M. E.; Giorgio, T. D.; Duvall, C. L. Hydrophobic interactions between polymeric carrier and palmitic acid-conjugated siRNA improve PEGylated polyplex stability and enhance in vivo pharmacokinetics and tumor gene silencing. Biomaterials 2016, 97, 122–132.Google Scholar
  84. [84]
    Ewe, A.; Höbel, S.; Heine, C.; Merz, L.; Kallendrusch, S.; Bechmann, I.; Merz, F.; Franke, H.; Aigner, A. Optimized polyethylenimine (PEI)-based nanoparticles for siRNA delivery, analyzed in vitro and in an ex vivo tumor tissue slice culture model. Drug Delivery Transl. Res. 2017, 7, 206–216.Google Scholar
  85. [85]
    Zhou, X. Y.; Zheng, Q. Q.; Wang, C. Y.; Xu, J. K.; Wu, J. P.; Kirk, T. B.; Ma, D.; Xue, W. Star-shaped amphiphilic hyperbranched polyglycerol conjugated with dendritic poly(L-lysine) for the codelivery of docetaxel and MMP-9 siRNA in cancer therapy. ACS Appl. Mater. Interface 2016, 8, 12609–12619.Google Scholar
  86. [86]
    Xu, L. Y.; Yeudall, W. A.; Yang, H. Folic acid-decorated polyamidoamine dendrimer exhibits high tumor uptake and sustained highly localized retention in solid tumors: Its utility for local siRNA delivery. Acta Biomater. 2017, 57, 251–261.Google Scholar
  87. [87]
    Kim, W. J.; Chang, C.-W.; Lee, M.; Kim, S. W. Efficient siRNA delivery using water soluble lipopolymer for antiangiogenic gene therapy. J. Control. Release 2007, 118, 357–363.Google Scholar
  88. [88]
    Tamura, A.; Nagasaki, Y. Smart siRNA delivery systems based on polymeric nanoassemblies and nanoparticles. Nanomedicine 2010, 5, 1089–1102.Google Scholar
  89. [89]
    Egilmez, N. K.; Kilinc, M. O.; Gu, T.; Conway, T. F. Controlled-release particulate cytokine adjuvants for cancer therapy. Endocr. Metab. Immune Disord.: Drug Targets 2007, 7, 266–270.Google Scholar
  90. [90]
    Sabatos, C. A.; Doh, J.; Chakravarti, S.; Friedman, R. S.; Pandurangi, P. G.; Tooley, A. J.; Krummel, M. F. A synaptic basis for paracrine interleukin-2 signaling during homotypic T cell interaction. Immunity 2008, 29, 238–248.Google Scholar
  91. [91]
    Fadel, T. R.; Sharp, F. A.; Vudattu, N.; Ragheb, R.; Garyu, J.; Kim, D.; Hong, E. P.; Li, N.; Haller, G. L.; Pfefferle, L. D. et al. A carbon nanotube-polymer composite for T-cell therapy. Nat. Nanotechnol. 2014, 9, 639–647.Google Scholar
  92. [92]
    Park, J.; Wrzesinski, S. H.; Stern, E.; Look, M.; Criscione, J.; Ragheb, R.; Jay, S. M.; Demento, S. L.; Agawu, A.; Licona Limon, P. et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater. 2012, 11, 895–905.Google Scholar
  93. [93]
    Frick, S. U.; Domogalla, M. P.; Baier, G.; Wurm, F. R.; Mailäender, V.; Landfester, K.; Steinbrink, K. Interleukin-2 functionalized nanocapsules for T cell-based immunotherapy. ACS Nano 2016, 10, 9216–9226.Google Scholar
  94. [94]
    Egilmez, N. K.; Jong, Y. S.; Sabel, M. S.; Jacob, J. S.; Mathiowitz, E.; Bankert, R. B. In situ tumor vaccination with interleukin-12-encapsulated biodegradable microspheres: Induction of tumor regression and potent antitumor immunity. Cancer Res. 2000, 60, 3832–3837.Google Scholar
  95. [95]
    Kilinc, M. O.; Aulakh, K. S.; Nair, R. E.; Jones, S. A.; Alard, P.; Kosiewicz, M. M.; Egilmez, N. K. Reversing tumor immune suppression with intratumoral IL-12: Activation of tumor-associated T effector/memory cells, induction of T suppressor apoptosis, and infiltration of CD8+ T effectors. J. Immunol. 2006, 177, 6962–6973.Google Scholar
  96. [96]
    Zaharoff, D. A.; Hance, K. W.; Rogers, C. J.; Schlom, J.; Greiner, J. W. Intratumoral immunotherapy of established solid tumors with chitosan/IL-12. J. Immunother. 2010, 33, 697–705.Google Scholar
  97. [97]
    Shimizu, T.; Kishida, T.; Hasegawa, U.; Ueda, Y.; Imanishi, J.; Yamagishi, H.; Akiyoshi, K.; Otsuji, E.; Mazda, O. Nanogel DDS enables sustained release of IL-12 for tumor immunotherapy. Biochem. Biophys. Res. Commun. 2008, 367, 330–335.Google Scholar
  98. [98]
    Wang, Y.; Lin, Y. X.; Qiao, S. L.; An, H. W.; Ma, Y.; Qiao, Z. Y.; Rajapaksha, R. P.; Wang, H. Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment. Biomaterials 2017, 112, 153–163.Google Scholar
  99. [99]
    Ali, O. A.; Verbeke, C.; Johnson, C.; Sands, R. W.; Lewin, S. A.; White, D.; Doherty, E.; Dranoff, G.; Mooney, D. J. Identification of immune factors regulating antitumor immunity using polymeric vaccines with multiple adjuvants. Cancer Res. 2014, 74, 1670–1681.Google Scholar
  100. [100]
    Sonabend, A. M.; Velicu, S.; Ulasov, I. V.; Han, Y.; Tyler, B.; Brem, H.; Matar, M. M.; Fewell, J. G.; Anwer, K.; Lesniak, M. S. A safety and efficacy study of local delivery of interleukin-12 transgene by PPC polymer in a model of experimental glioma. Anti-Cancer Drugs 2008, 19, 133–142.Google Scholar
  101. [101]
    Kantoff, P. W.; Higano, C. S.; Shore, N. D.; Berger, E. R.; Small, E. J.; Penson, D. F.; Redfern, C. H.; Ferrari, A. C.; Dreicer, R.; Sims, R. B. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 2010, 363, 411–422.Google Scholar
  102. [102]
    Mak, I. W. Y.; Evaniew, N.; Ghert, M. Lost in translation: Animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 2014, 6, 114–118.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shengxian Li
    • 1
    • 2
  • Xiangru Feng
    • 1
  • Jixue Wang
    • 2
  • Liang He
    • 2
  • Chunxi Wang
    • 2
  • Jianxun Ding
    • 1
  • Xuesi Chen
    • 1
  1. 1.Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.Department of UrologyThe First Hospital of Jilin UniversityChangchunChina

Personalised recommendations