Advertisement

Nano Research

, Volume 11, Issue 11, pp 5946–5956 | Cite as

Superlubricity of epitaxial monolayer WS2 on graphene

  • Holger Büch
  • Antonio Rossi
  • Stiven Forti
  • Domenica Convertino
  • Valentina Tozzini
  • Camilla ColettiEmail author
Open Access
Research Article

Abstract

We report the superlubric sliding of monolayer tungsten disulfide (WS2) on epitaxial graphene (EG) grown on silicon carbide (SiC). Single-crystalline WS2 flakes with lateral size of hundreds of nanometers are obtained via chemical vapor deposition (CVD) on EG. Microscopic and diffraction analyses indicate that the WS2/EG stack is predominantly aligned with zero azimuthal rotation. The present experiments show that, when perturbed by a scanning probe microscopy (SPM) tip, the WS2 flakes are prone to slide over the graphene surfaces at room temperature. Atomistic force field-based molecular dynamics simulations indicate that, through local physical deformation of the WS2 flake, the scanning tip releases enough energy to the flake to overcome the motion activation barrier and trigger an ultralow-friction rototranslational displacement, that is superlubric. Experimental observations show that, after sliding, the WS2 flakes come to rest with a rotation of nπ/3 with respect to graphene. Moreover, atomically resolved measurements show that the interface is atomically sharp and the WS2 lattice is strain-free. These results help to shed light on nanotribological phenomena in van der Waals (vdW) heterostacks, and suggest that the applicative potential of the WS2/graphene heterostructure can be extended by novel mechanical prospects.

Keywords

superlubricity graphene tungsten disulfide scanning tunneling microscopy (STM) two-dimensional (2D) materials nanomechanical 

Notes

Acknowledgements

We wish to thank Professor Annalisa Fasolino for useful discussions and suggestions. The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement Nos. 696656 – GrapheneCore1 and 785219 – GrapheneCore2.

Supplementary material

12274_2018_2108_MOESM1_ESM.mov (66.6 mb)
Supplementary material, approximately 66.5 MB.
12274_2018_2108_MOESM2_ESM.mov (17 mb)
Supplementary material, approximately 17.0 MB.

Supplementary material, approximately 3.76 MB.

12274_2018_2108_MOESM4_ESM.mov (795 kb)
Supplementary material, approximately 795 KB.
12274_2018_2108_MOESM5_ESM.pdf (3 mb)
Superlubricity of epitaxial monolayer WS2 on graphene

References

  1. [1]
    Lotsch, B. V. Vertical 2D heterostructures. Annu. Rev. Mater. Res. 2015, 45, 85–109.CrossRefGoogle Scholar
  2. [2]
    Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.CrossRefGoogle Scholar
  3. [3]
    Liu, L. T.; Kumar, S. B.; Ouyang, Y. J.; Guo, J. Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans. Electron Devices 2011, 58: 3042–3047.CrossRefGoogle Scholar
  4. [4]
    Cheng, L.; Huang, W. J.; Gong, Q. F.; Liu, C. H.; Liu, Z.; Li, Y. G.; Dai, H. J. Ultrathin WS2 nanoflakes as a highperformance electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53: 7860–7863.CrossRefGoogle Scholar
  5. [5]
    Forti, S.; Rossi, A.; Büch, H.; Cavallucci, T.; Bisio, F.; Sala, A.; Menteş, T. O.; Locatelli, A.; Magnozzi, M.; Canepa, M. et al. Electronic properties of single-layer tungsten disulfide on epitaxial graphene on silicon carbide. Nanoscale 2017, 9: 16412–16419.CrossRefGoogle Scholar
  6. [6]
    Dendzik, M.; Michiardi, M.; Sanders, C.; Bianchi, M.; Miwa, J. A.; Grønborg, S. S.; Lauritsen, J. V.; Bruix, A.; Hammer, B.; Hofmann, P. Growth and electronic structure of epitaxial single-layer WS2 on Au(111). Phys. Rev. B 2015, 92, 245442.CrossRefGoogle Scholar
  7. [7]
    Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol.2013, 8: 100–103.CrossRefGoogle Scholar
  8. [8]
    Mehew, J. D.; Unal, S.; Torres Alonso, E.; Jones, G. F.; Fadhil Ramadhan, S.; Craciun, M. F.; Russo, S. Fast and highly sensitive ionic-polymer-gated WS2-graphene photodetectors. Adv. Mater. 2017, 29, 1700222.CrossRefGoogle Scholar
  9. [9]
    Rossi, A.; Spirito, D.; Bianco, F.; Forti, S.; Fabbri, F.; Büch, H.; Tredicucci, A.; Krahne, R.; Coletti, C. Patterned tungsten disulfide/graphene heterostructures for efficient multifunctional optoelectronic devices. Nanoscale 2018, 10: 4332–4338.CrossRefGoogle Scholar
  10. [10]
    Zheng, Q. S.; Jiang, B.; Liu, S. P.; Weng, Y. X.; Lu, L.; Xue, Q. K.; Zhu, J.; Jiang, Q.; Wang, S.; Peng, L. M. Selfretracting motion of graphite microflakes. Phys. Rev. Lett. 2008, 100, 067205.CrossRefGoogle Scholar
  11. [11]
    Liu, Z.; Yang, J. R.; Grey, F.; Liu, J. Z.; Liu, Y. L.; Wang, Y. B.; Yang, Y. L.; Cheng, Y.; Zheng, Q. S. Observation of microscale superlubricity in graphite. Phys. Rev. Lett. 2012, 108, 205503.CrossRefGoogle Scholar
  12. [12]
    Martin, J. M.; Donnet, C.; Le Mogne, T.; Epicier, T. Superlubricity of molybdenum disulphide. Phys. Rev. B 1993, 48: 10583–10586.CrossRefGoogle Scholar
  13. [13]
    Oviedo, J. P.; KC, S.; Lu, N.; Wang, J. G.; Cho, K.; Wallace, R. M.; Kim, M. J. In situ TEM characterization of shear-stress-induced interlayer sliding in the cross section view of molybdenum disulfide. ACS Nano 2015, 9: 1543–1551.CrossRefGoogle Scholar
  14. [14]
    Hirano, M.; Shinjo, K. Atomistic locking and friction. Phys. Rev. B 1990, 41: 11837–11851.CrossRefGoogle Scholar
  15. [15]
    Hirano, M.; Shinjo, K. Superlubricity and frictional anisotropy. Wear 1993, 168: 121–125.CrossRefGoogle Scholar
  16. [16]
    Hirano, M.; Shinjo, K.; Kaneko, R.; Murata, Y. Observation of superlubricity by scanning tunneling microscopy. Phys. Rev. Lett. 1997, 78: 1448–1451.CrossRefGoogle Scholar
  17. [17]
    Hod, O. The registry index: A quantitative measure of materials’ interfacial commensurability. ChemPhysChem 2013, 14: 2376–2391.CrossRefGoogle Scholar
  18. [18]
    Kontorova, T. A.; Frenkel, J. On the theory of plastic deformation and twinning. II. Zh. Eksp. Teor. Fiz. 1938, 8: 1340–1348.Google Scholar
  19. [19]
    Guerra, R.; van Wijk, M.; Vanossi, A.; Fasolino, A.; Tosatti, E. Graphene on h-BN: To align or not to align? Nanoscale 2017, 9: 8799–8804.CrossRefGoogle Scholar
  20. [20]
    Dienwiebel, M.; Verhoeven, G. S.; Pradeep, N.; Frenken, J. W. M.; Heimberg, J. A.; Zandbergen, H. W. Superlubricity of graphite. Phys. Rev. Lett. 2004, 92, 126101.CrossRefGoogle Scholar
  21. [21]
    Feng, X. F.; Kwon, S.; Park, J. Y.; Salmeron, M. Superlubric sliding of graphene nanoflakes on graphene. ACS Nano 2013, 7: 1718–1724.CrossRefGoogle Scholar
  22. [22]
    Li, H.; Wang, J. H.; Gao, S.; Chen, Q.; Peng, L. M.; Liu, K. H.; Wei, X. L. Superlubricity between MoS2 monolayers. Adv. Mater. 2017, 29, 1701474.CrossRefGoogle Scholar
  23. [23]
    Liu, S.-W.; Wang, H.-P.; Xu, Q.; Ma, T.-B.; Yu, G.; Zhang, C. H.; Geng, D. C.; Yu, Z. W.; Zhang, S. G.; Wang, W. Z. et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat. Commun. 2017, 8, 14029.CrossRefGoogle Scholar
  24. [24]
    Wang, D. M.; Chen, G. R.; Li, C. K.; Cheng, M.; Yang, W.; Wu, S.; Xie, G. B.; Zhang, J.; Zhao, J.; Lu, X. B. et al. Thermally induced graphene rotation on hexagonal boron nitride. Phys. Rev. Lett. 2016, 116, 126101.CrossRefGoogle Scholar
  25. [25]
    Wang, L. F.; Zhou, X.; Ma, T. B.; Liu, D. M.; Gao, L.; Li, X.; Zhang, J.; Hu, Y. Z.; Wang, H.; Dai, Y. D. et al. Superlubricity of a graphene/MoS2 heterostructure: A combined experimental and DFT study. Nanoscale 2017, 9: 10846–10853.CrossRefGoogle Scholar
  26. [26]
    Leven, I.; Krepel, D.; Shemesh, O.; Hod, O. Robust superlubricity in graphene/h-BN heterojunctions. J. Phys. Chem. Lett. 2013, 4: 115–120.CrossRefGoogle Scholar
  27. [27]
    Rossi, A.; Büch, H.; Di Rienzo, C.; Miseikis, V.; Convertino, D.; Al-Temimy, A.; Voliani, V.; Gemmi, M.; Piazza, V.; Coletti, C. Scalable synthesis of WS2 on graphene and h-BN: An all-2D platform for light-matter transduction. 2D Mater. 2016, 3, 31013.CrossRefGoogle Scholar
  28. [28]
    Goler, S.; Coletti, C.; Piazza, V.; Pingue, P.; Colangelo, F.; Pellegrini, V.; Emtsev, K. V.; Forti, S.; Starke, U.; Beltram, F. et al. Revealing the atomic structure of the buffer layer between SiC(0001) and epitaxial graphene. Carbon 2013, 51: 249–254.CrossRefGoogle Scholar
  29. [29]
    Necas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10: 181–188.Google Scholar
  30. [30]
    Smith, W.; Forester, T. R. DL_POLY_2.0: A generalpurpose parallel molecular dynamics simulation package. J. Mol. Graph. 1996, 14: 136–141.CrossRefGoogle Scholar
  31. [31]
    Miwa, J. A.; Dendzik, M.; Grønborg, S. S.; Bianchi, M.; Lauritsen, J. V.; Hofmann, P.; Ulstrup, S. Van der Waals epitaxy of two-dimensional MoS2–graphene heterostructures in ultrahigh vacuum. ACS Nano 2015, 9: 6502–6510.CrossRefGoogle Scholar
  32. [32]
    Liu, X. L.; Balla, I.; Bergeron, H.; Campbell, G. P.; Bedzyk, M. J.; Hersam, M. C. Rotationally commensurate growth of MoS2 on epitaxial graphene. ACS Nano 2016, 10: 1067–1075.CrossRefGoogle Scholar
  33. [33]
    Zhang, C. D.; Johnson, A.; Hsu, C. L.; Li, L. J.; Shih, C. K. Direct imaging of band profile in single layer MoS2 on graphite: Quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett. 2014, 14: 2443–2447.CrossRefGoogle Scholar
  34. [34]
    Huang, Y. L.; Chen, Y. F.; Zhang, W. J.; Quek, S. Y.; Chen, C. H.; Li, L. J.; Hsu, W. T.; Chang, W. H.; Zheng, Y. J.; Chen, W. et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 2015, 6, 6298.CrossRefGoogle Scholar
  35. [35]
    Pierucci, D.; Henck, H.; Avila, J.; Balan, A.; Naylor, C. H.; Patriarche, G.; Dappe, Y. J.; Silly, M. G.; Sirotti, F.; Johnson, A. T. C. et al. Band alignment and minigaps in monolayer MoS2-graphene van der Waals heterostructures. Nano Lett. 2016, 7: 4054–4061.CrossRefGoogle Scholar
  36. [36]
    Xu, P.; Yang, Y. R.; Qi, D.; Barber, S. D.; Schoelz, J. K.; Ackerman, M. L.; Bellaiche, L.; Thibado, P. M. Electronic transition from graphite to graphene via controlled movement of the top layer with scanning tunneling microscopy. Phys. Rev. B 2012, 86: 085428.CrossRefGoogle Scholar
  37. [37]
    Xu, P.; Ackerman, M. L.; Barber, S. D.; Schoelz, J. K.; Qi, D. J.; Thibado, P. M.; Wheeler, V. D.; Nyakiti, L. O.; Myers-Ward, R. L.; Eddy, C. R., Jr. et al. Graphene manipulation on 4H-SiC (0001) using scanning tunneling microscopy. Jpn. J. Appl. Phys. 2013, 52: 035104.CrossRefGoogle Scholar
  38. [38]
    Kobayashi, Y.; Taniguchi, T.; Watanabe, K.; Maniwa, Y.; Miyata, Y. Slidable atomic layers in van der Waals heterostructures. Appl. Phys. Express 2017, 10: 045201.CrossRefGoogle Scholar
  39. [39]
    de Heer, W. A.; Berger, C.; Wu, X. S.; First, P. N.; Conrad, E. H.; Li, X. B.; Li, T. B.; Sprinkle, M.; Hass, J.; Sadowski, M. L. et al. Epitaxial graphene. Solid State Commun. 2007, 143, 92–100.CrossRefGoogle Scholar
  40. [40]
    Lauffer, P.; Emtsev, K. V.; Graupner, R.; Seyller, T.; Ley, L.; Reshanov, S. A.; Weber, H. B. Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy. Phys. Rev. B 2008, 77: 155426.CrossRefGoogle Scholar
  41. [41]
    Perea-López, N.; Lin, Z.; Pradhan, N. R.; Iñiguez-Rábago, A.; Laura Elías, A.; McCreary, A.; Lou, J.; Ajayan, P. M.; Terrones, H.; Balicas, L. et al. CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Mater. 2014, 1: 011004.CrossRefGoogle Scholar
  42. [42]
    Yoshida, S.; Kobayashi, Y.; Sakurada, R.; Mori, S.; Miyata, Y.; Mogi, H.; Koyama, T.; Takeuchi, O.; Shigekawa, H. Microscopic basis for the band engineering of Mo1-xWxS2-based heterojunction. Sci. Rep. 2015, 5: 14808.CrossRefGoogle Scholar
  43. [43]
    Lin, Z.; Carvalho, B. R.; Kahn, E.; Lv, R. T.; Rao, R.; Terrones, H.; Pimenta, M. A.; Terrones, M. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 2016, 3: 022002.CrossRefGoogle Scholar
  44. [44]
    Parkin, W. M.; Balan, A.; Liang, L. B.; Das, P. M.; Lamparski, M.; Naylor, C. H.; Rodríguez-Manzo, J. A.; Johnson, A. T. C.; Meunier, V.; Drndic, M. Raman shifts in electron-irradiated monolayer MoS2. ACS Nano 2016, 10: 4134–4142.CrossRefGoogle Scholar
  45. [45]
    Fabbri, F.; Rotunno, E.; Cinquanta, E.; Campi, D.; Bonnini, E.; Kaplan, D.; Lazzarini, L.; Bernasconi, M.; Ferrari, C.; Longo, M. et al. Novel near-infrared emission from crystal defects in MoS2 multilayer flakes. Nat. Commun. 2016, 7, 13044.CrossRefGoogle Scholar
  46. [46]
    Kormányos, A.; Burkard, G.; Gmitra, M.; Fabian, J.; Zólyomi, V.; Drummond, N. D.; Fal’ko, V. Corrigendum: k.p theory for two-dimensional transition metal dichalcogenide semiconductors (2015 2D Mater. 2 022001). 2D Mater. 2015, 2, 049501.CrossRefGoogle Scholar
  47. [47]
    Liu, X. L.; Balla, I.; Bergeron, H.; Hersam, M. C. Point defects and grain boundaries in rotationally commensurate MoS2 on epitaxial graphene. J. Phys. Chem. C 2016, 120, 20798–20805.CrossRefGoogle Scholar
  48. [48]
    González, C.; Biel, B.; Dappe, Y. J. Theoretical characterisation of point defects on a MoS2 monolayer by scanning tunnelling microscopy. Nanotechnology 2016, 27: 105702.CrossRefGoogle Scholar
  49. [49]
    Füchtbauer, H. G.; Tuxen, A. K.; Moses, P. G.; Topsøe, H.; Besenbacher, F.; Lauritsen, J. V. Morphology and atomicscale structure of single-layer WS2 nanoclusters. Phys. Chem. Chem. Phys. 2013, 15: 15971–15980.CrossRefGoogle Scholar
  50. [50]
    Dong, Y. L.; Wu, X. W.; Martini, A. Atomic roughness enhanced friction on hydrogenated graphene. Nanotechnology 2013, 24, 375701.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018
, corrected publication 08/2018

Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Authors and Affiliations

  • Holger Büch
    • 1
  • Antonio Rossi
    • 1
    • 2
  • Stiven Forti
    • 1
  • Domenica Convertino
    • 1
    • 2
  • Valentina Tozzini
    • 2
  • Camilla Coletti
    • 1
    • 3
    Email author
  1. 1.Center for Nanotechnology Innovation @NESTIstituto Italiano di TecnologiaPisaItaly
  2. 2.NEST, Istituto Nanoscienze – CNR and Scuola Normale SuperiorePisaItaly
  3. 3.Graphene LabsIstituto Italiano di TecnologiaGenovaItaly

Personalised recommendations