Investigation of charge carrier depletion in freestanding nanowires by a multi-probe scanning tunneling microscope

  • Andreas Nägelein
  • Matthias Steidl
  • Stefan Korte
  • Bert Voigtländer
  • Werner Prost
  • Peter Kleinschmidt
  • Thomas Hannappel
Research Article


Profiling of the electrical properties of nanowires (NWs) and NW heterocontacts with high spatial resolution is a challenge for any application and advanced NW device development. For appropriate NW analysis, we have established a four-point prober, which is combined in vacuo with a state-of-the-art vapor-liquid-solid preparation, enabling contamination-free NW characterization with high spatial resolution. With this ultrahigh-vacuum-based multi-tip scanning tunneling microscopy (MT-STM), we obtained the resistance and doping profiles of freestanding NWs, along with surface-sensitive information. Our in-system 4-probe STM approach decreased the detection limit for low dopant concentrations to the depleted case in upright standing NWs, while increasing the spatial resolution and considering radial depletion regions, which may originate from surface changes. Accordingly, the surface potential of oxide-free GaAs NW {112} facets has been estimated to be lower than 20 mV, indicating a NW surface with very low surface state density.


multi-tip scanning tunneling microscopy (MT-STM) electrical characterization nanowires charge carrier depletion oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors appreciate experimental support by Vasily Cherepanov, Franz-Peter Coenen, Antonio Müller and Mathias Biester. A. N. acknowledges a scholarship of the Carl Zeiss Stiftung. This work was supported by the German Federal Ministry of Education and Research (BMBF, project No. 03SF0404A) and was co-sponsored by the DFG research group 1616 “Dynamics and Interaction of Semiconductor Nanowires for Optoelectronics”.

Supplementary material

12274_2018_2105_MOESM1_ESM.pdf (1007 kb)
Investigation of charge carrier depletion in freestanding nanowires by a multi-probe scanning tunneling microscope


  1. [1]
    Koester, R.; Sager, D.; Quitsch, W. A.; Pfingsten, O.; Poloczek, A.; Blumenthal, S.; Keller, G.; Prost, W.; Bacher, G.; Tegude, F. J. High-speed GaN/GaInN nanowire array light-emitting diode on silicon(111). Nano Lett. 2015, 15, 2318–2323.CrossRefGoogle Scholar
  2. [2]
    Kivisaari, P.; Berg, A.; Karimi, M.; Storm, K.; Limpert, S.; Oksanen, J.; Samuelson, L.; Pettersson, H.; Borgström, M. T. Optimization of current injection in algainp core-shell nanowire light-emitting diodes. Nano Lett. 2017, 17, 3599–3606.CrossRefGoogle Scholar
  3. [3]
    Tomioka, K.; Izhizaka, F.; Fukui, T. Selective-area growth of InAs nanowires on Ge and vertical transistor application. Nano Lett. 2015, 15, 7253–7257.CrossRefGoogle Scholar
  4. [4]
    Berg, M.; Kilpi, O. P.; Persson, K. M.; Svensson, J.; Hellenbrand, M.; Lind, E.; Wernersson, L. E. Electrical characterization and modeling of gate-last vertical InAs nanowire MOSFETs on Si. IEEE Electron Device Lett. 2016, 37, 966–969.CrossRefGoogle Scholar
  5. [5]
    Svensson, J.; Dey, A. W.; Jacobsson, D.; Wernersson, L. E. III-V nanowire complementary metal-oxide semiconductor transistors monolithically integrated on Si. Nano Lett. 2015, 15, 7898–7904.CrossRefGoogle Scholar
  6. [6]
    Aberg, I.; Vescovi, G.; Asoli, D.; Naseem, U.; Gilboy, J. P.; Sundvall, C.; Dahlgren, A.; Svensson, K. E.; Anttu, N.; Bjork, M. T. et al. A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun. IEEE J. Photovoltaics 2016, 6, 185–190.CrossRefGoogle Scholar
  7. [7]
    Zeng, Y.; Ye, Q. H.; Shen, W. Z. Design principles for single standing nanowire solar cells: Going beyond the planar efficiency limits. Sci. Rep. 2015, 4, 4915.CrossRefGoogle Scholar
  8. [8]
    Wallentin, J.; Borgström, M. T. Doping of semiconductor nanowires. J. Mater. Res. 2011, 26, 2142–2156.CrossRefGoogle Scholar
  9. [9]
    Gutsche, C.; Niepelt, R.; Gnauck, M.; Lysov, A.; Prost, W.; Ronning, C.; Tegude, F. J. Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p-n junctions. Nano Lett. 2012, 12, 1453–1458.CrossRefGoogle Scholar
  10. [10]
    Paiano, P.; Prete, P.; Lovergine, N.; Mancini, A. M. Size and shape control of GaAs nanowires grown by metalorganic vapor phase epitaxy using tertiarybutylarsine. J. Appl. Phys. 2006, 100, 094305.CrossRefGoogle Scholar
  11. [11]
    Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y.; Zhang, X.; Guo, Y.; Zou, J. Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. Nano Lett. 2007, 7, 921–926.CrossRefGoogle Scholar
  12. [12]
    Simpkins, B. S.; Mastro, M. A.; Eddy, C. R., Jr.; Pehrsson, P. E. Surface depletion effects in semiconducting nanowires. J. Appl. Phys. 2008, 103, 104313.CrossRefGoogle Scholar
  13. [13]
    Wang, D. W.; Chang, Y. L.; Wang, Q.; Cao, J.; Farmer, D. B.; Gordon, R. G.; Dai, H. J. Surface chemistry and electrical properties of germanium nanowires. J. Am. Chem. Soc. 2004, 126, 11602–11611.CrossRefGoogle Scholar
  14. [14]
    Korte, S.; Steidl, M.; Prost, W.; Cherepanov, V.; Voigtländer, B.; Zhao, W.; Kleinschmidt, P.; Hannappel, T. Resistance and dopant profiling along freestanding GaAs nanowires. Appl. Phys. Lett. 2013, 103, 143104.CrossRefGoogle Scholar
  15. [15]
    Gutsche, C.; Regolin, I.; Blekker, K.; Lysov, A.; Prost, W.; Tegude, F. J. Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth. J. Appl. Phys. 2009, 105, 024305.CrossRefGoogle Scholar
  16. [16]
    Miccoli, I.; Edler, F.; Prete, P.; Lovergine, N.; Pfnür, H.; Tegenkamp, C.; Surface-mediated electrical transport in single GaAs nanowires. In Proceedings of the 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOfIM 2015): Measurements in the World of Nanosensing, Lecce, Italy, 2015, pp 143–147.Google Scholar
  17. [17]
    Borgström, M. T.; Norberg, E.; Wickert, P.; Nilsson, H. A.; Trägårdh, J.; Dick, K. A.; Statkute, G.; Ramvall, P.; Deppert, K.; Samuelson, L. Precursor evaluation for in situ InP nanowire doping. Nanotechnology 2008, 19, 445602.CrossRefGoogle Scholar
  18. [18]
    Dong, Y. J.; Tian, B. Z.; Kempa, T. J.; Lieber, C. M. Coaxial group III-nitride nanowire photovoltaics. Nano Lett. 2009, 9, 2183–2187.CrossRefGoogle Scholar
  19. [19]
    Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.CrossRefGoogle Scholar
  20. [20]
    Stern, E.; Cheng, G.; Cimpoiasu, E.; Klie, R.; Guthrie, S.; Klemic, J.; Kretzschmar, I.; Steinlauf, E.; Turner-Evans, D.; Broomfield, E. et al. Electrical characterization of single GaN nanowires. Nanotechnology 2005, 16, 2941–2953.CrossRefGoogle Scholar
  21. [21]
    Hannappel, T.; Visbeck, S.; Töben, L.; Willig, F. Apparatus for investigating metalorganic chemical vapor depositiongrown semiconductors with ultrahigh-vacuum based techniques. Rev. Sci. Instrum. 2004, 75, 1297–1304.CrossRefGoogle Scholar
  22. [22]
    Zhao, W.; Steidl, M.; Paszuk, A.; Brückner, S.; Dobrich, A.; Supplie, O.; Kleinschmidt, P.; Hannappel, T. Analysis of the Si(111) surface prepared in chemical vapor ambient for subsequent III-V heteroepitaxy. Appl. Surf. Sci. 2017, 392, 1043–1048.CrossRefGoogle Scholar
  23. [23]
    Supplie, O.; May, M. M.; Kleinschmidt, P.; Nägelein, A.; Paszuk, A.; Brückner, S.; Hannappel, T. In situ controlled heteroepitaxy of single-domain GaP on As-modified Si(100). APL Mater. 2015, 3, 126110.CrossRefGoogle Scholar
  24. [24]
    Cherepanov, V.; Zubkov, E.; Junker, H.; Korte, S.; Blab, M.; Coenen, P.; Voigtländer, B. Ultra compact multitip scanning tunneling microscope with a diameter of 50 mm. Rev. Sci. Instrum. 2012, 83, 33707.CrossRefGoogle Scholar
  25. [25]
    Hilsum, C. Simple empirical relationship between mobility and carrier concentration. Electron. Lett. 1974, 10, 259–260.CrossRefGoogle Scholar
  26. [26]
    Sze, S. M.; Irvin, J. C. Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300°K. Solid State Electron. 1968, 11, 599–602.CrossRefGoogle Scholar
  27. [27]
    Strzalkowski, I.; Joshi, S.; Crowell, C. R. Dielectric constant and its temperature dependence for GaAs, CdTe, and ZnSe. Appl. Phys. Lett. 1976, 28, 350–352.CrossRefGoogle Scholar
  28. [28]
    Chia, A. C. E.; LaPierre, R. R. Analytical model of surface depletion in GaAs nanowires. J. Appl. Phys. 2012, 112, 063705.CrossRefGoogle Scholar
  29. [29]
    Mareš, J. J.; Krištofik, J.; Šmid, V.; Zeman, J. On the d. c. conductivity in semi-insulating GaAs. Solid State Commun. 1986, 60, 275–276.CrossRefGoogle Scholar
  30. [30]
    Kanagawa, T.; Hobara, R.; Matsuda, I.; Tanikawa, T.; Natori, A.; Hasegawa, S. Anisotropy in conductance of a quasi-one-dimensional metallic surface state measured by a square micro-four-point probe method. Phys. Rev. Lett. 2003, 91, 036805.CrossRefGoogle Scholar
  31. [31]
    Wells, J. W.; Kallehauge, J. F.; Hansen, T. M.; Hofmann, P. Disentangling surface, bulk, and space-charge-layer conductivity in Si(111)-(7×7). Phys. Rev. Lett. 2006, 97, 206803.CrossRefGoogle Scholar
  32. [32]
    Hasegawa, S.; Grey, F. Electronic transport at semiconductor surfaces-from point-contact transistor to micro-four-point probes. Surf. Sci. 2002, 500, 84–104.CrossRefGoogle Scholar
  33. [33]
    Just, S.; Blab, M.; Korte, S.; Cherepanov, V.; Soltner, H.; Voigtländer, B. Surface and step conductivities on Si(111) surfaces. Phys. Rev. Lett. 2015, 115, 066801.CrossRefGoogle Scholar
  34. [34]
    Thiandoume, C.; Sallet, V.; Triboulet, R.; Gorochov, O. Decomposition kinetics of tertiarybutanol and diethylzinc used as precursor sources for the growth of ZnO. J. Cryst. Growth 2009, 311, 1411–1415.CrossRefGoogle Scholar
  35. [35]
    Pristovsek, M. Fundamental growth processes on different gallium arsenide surfaces in metal-organic vapor phase epitaxy. Ph.D. Dissertation, Technische Universität Berlin, 2001.Google Scholar
  36. [36]
    Jiang, N.; Wong-Leung, J.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C. Understanding the true shape of Au-catalyzed GaAs nanowires. Nano Lett. 2014, 14, 5865–5872.CrossRefGoogle Scholar
  37. [37]
    Cahangirov, S.; Ciraci, S. First-principles study of GaAs nanowires. Phys. Rev. B 2009, 79, 165118.CrossRefGoogle Scholar
  38. [38]
    Jacobi, K.; Platen, J.; Setzer, C.; Márquez, J.; Geelhaar, L.; Meyne, C.; Richter, W.; Kley, A.; Ruggerone, P.; Scheffler, M. Morphology, surface core-level shifts and surface energy of the faceted GaAs(112)A and (īīxxx)B surfaces. Surf. Sci. 1999, 439, 59–72.CrossRefGoogle Scholar
  39. [39]
    Allwood, D. A.; Carline, R. T.; Mason, N. J.; Pickering, C.; Tanner, B. K.; Walker, P. J. Characterization of oxide layers on GaAs substrates. Thin Solid Films 2000, 364, 33–39.CrossRefGoogle Scholar
  40. [40]
    Spicer, W. E.; Lindau, I.; Gregory, P. E.; Garner, C. M.; Pianetta, P.; Chye, P. W. Synchrotron radiation studies of electronic structure and surface chemistry of GaAs, GaSb, and InP. J. Vac. Sci. Technol. 1976, 13, 780–785.CrossRefGoogle Scholar
  41. [41]
    M’Hamedi, O.; Proix, F.; Sebenne, C. Effects of atomic hydrogen on the surface properties of cleaved GaAs(110). Semicond. Sci. Technol. 1987, 2, 418–427.CrossRefGoogle Scholar
  42. [42]
    Lüth, H. Solid Surfaces, Interfaces and Thin Films (Graduate Texts in Physics); 6th ed.; Springer International Publishing: Cham, 2015.Google Scholar
  43. [43]
    Jabeen, F.; Rubini, S.; Martelli, F.; Franciosi, A.; Kolmakov, A.; Gregoratti, L.; Amati, M.; Barinov, A.; Goldoni, A.; Kiskinova, M. Contactless monitoring of the diameterdependent conductivity of GaAs nanowires. Nano Res. 2010, 3, 706–713.CrossRefGoogle Scholar
  44. [44]
    Mares, J. J.; Kristofik, J.; Smid, V. Surface conductance in semi-insulating GaAs. Semicond. Sci. Technol. 1992, 7, 119–124.CrossRefGoogle Scholar
  45. [45]
    Kreutz, E. W.; Schroll, P. Gap states at the GaAs-natural oxide interface. Surf. Technol. 1981, 12, 217–230.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Andreas Nägelein
    • 1
  • Matthias Steidl
    • 1
  • Stefan Korte
    • 2
    • 3
  • Bert Voigtländer
    • 2
    • 3
  • Werner Prost
    • 4
  • Peter Kleinschmidt
    • 1
  • Thomas Hannappel
    • 1
  1. 1.Technische Universität IlmenauInstitut für PhysikIlmenauGermany
  2. 2.Peter Grünberg Institut (PGI-3,)Forschungszentrum JülichJülichGermany
  3. 3.JARA-Fundamentals of Future Information TechnologyForschungszentrum JülichJülichGermany
  4. 4.Solid State Electronics DepartmentUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations