Skip to main content
Log in

Construction of bilayer PdSe2 on epitaxial graphene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials have received significant attention due to their unique physical properties and potential applications in electronics and optoelectronics. Recent studies have demonstrated that exfoliated PdSe2, a layered transition metal dichalcogenide (TMD), exhibits ambipolar field-effect transistor (FET) behavior with notable performance and good air stability, and thus serves as an emerging candidate for 2D electronics. Here, we report the growth of bilayer PdSe2 on a graphene-SiC(0001) substrate by molecular beam epitaxy (MBE). A bandgap of 1.15 ± 0.07 eV was revealed by scanning tunneling spectroscopy (STS). Moreover, a bandgap shift of 0.2 eV was observed in PdSe2 layers grown on monolayer graphene as compared to those grown on bilayer graphene. The realization of nanoscale electronic junctions with atomically sharp boundaries in 2D PdSe2 implies the possibility of tuning its electronic or optoelectronic properties. In addition, on top of the PdSe2 bilayers, PdSe2 nanoribbons and stacks of nanoribbons with a fixed orientation have been fabricated. The bottom-up fabrication of low-dimensional PdSe2 structures is expected to enable substantial exploration of its potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jariwala, D.; Davoyan, A. R.; Wong, J.; Atwater, H. A. Van der Waals materials for atomically-thin photovoltaics: Promise and outlook. ACS Photonics 2017, 4, 2962–2970.

    Article  Google Scholar 

  2. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

    Article  Google Scholar 

  3. Pan, Y.; Zhang, L. Z.; Huang, L.; Li, L. F.; Meng, L.; Gao, M.; Huan, Q.; Lin, X.; Wang, Y. L.; Du, S. X. et al. Construction of 2D atomic crystals on transition metal surfaces: Graphene, silicene, and hafnene. Small 2014, 10, 2215–2225.

    Article  Google Scholar 

  4. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  5. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  6. Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

    Article  Google Scholar 

  7. Liu, G.-B.; Xiao, D.; Yao, Y. G.; Xu, X. D.; Yao, W. Electronic structures and theoretical modelling of twodimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2643–2663.

    Article  Google Scholar 

  8. Zhang, Y.; Chang, T.-R.; Zhou, B.; Cui, Y.-T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.

    Article  Google Scholar 

  9. Zhang, Y.; Ugeda, M. M.; Jin, C. H.; Shi, S.-F.; Bradley, A. J.; Martín-Recio, A.; Ryu, H.; Kim, J.; Tang, S. J.; Kim, Y. et al. Electronic structure, surface doping, and optical response in epitaxial WSe2 thin films. Nano Lett. 2016, 16, 2485–2491.

    Article  Google Scholar 

  10. Ugeda, M. M.; Bradley, A. J.; Shi, S.-F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S.-K.; Hussain, Z.; Shen, Z.-X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095.

    Article  Google Scholar 

  11. Wang, Y. L.; Li, L. F.; Yao, W.; Song, S. R.; Sun, J. T.; Pan, J. B.; Ren, X.; Li, C.; Okunishi, E.; Wang, Y. Q. et al. Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 2015, 15, 4013–4018.

    Article  Google Scholar 

  12. Kolobov, A. V.; Tominaga, J. Two-Dimensional Transition- Metal Dichalcogenides; Springer: Switzerland, 2016.

    Book  Google Scholar 

  13. Soulard, C.; Rocquefelte, X.; Petit, P.-E.; Evain, M.; Jobic, S.; Itié, J.-P.; Munsch, P.; Koo, H.-J.; Whangbo, M.-H. Experimental and theoretical investigation on the relative stability of the PdS2- and pyrite-type structures of PdSe2. Inorg. Chem. 2004, 43, 1943–1949.

    Article  Google Scholar 

  14. Chow, W. L.; Yu, P.; Liu, F. C.; Hong, J. H.; Wang, X. L.; Zeng, Q. S.; Hsu, C. H.; Zhu, C.; Zhou, J. D.; Wang, X. W. et al. High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater. 2017, 29, 1602969.

    Article  Google Scholar 

  15. Oyedele, A. D.; Yang, S. Z.; Liang, L. B.; Puretzky, A. A.; Wang, K.; Zhang, J. J.; Yu, P.; Pudasaini, P. R.; Ghosh, A. W.; Liu, Z.; Rouleau, C. M. et al. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017, 139, 14090–14097.

    Article  Google Scholar 

  16. Zhang, S. H.; Zhou, J.; Wang, Q.; Chen, X. S.; Kawazoe, Y.; Jena, P. Penta-graphene: A new carbon allotrope. Proc. Natl. Acad. Sci. USA 2015, 112, 2372–2377.

    Article  Google Scholar 

  17. Ma, Y. D.; Kou, L. Z.; Li, X.; Dai, Y.; Heine, T. Room temperature quantum spin Hall states in two-dimensional crystals composed of pentagonal rings and their quantum wells. NPG Asia Mater. 2016, 8, e264.

    Article  Google Scholar 

  18. Zhang, R.-W.; Liu, C.-C.; Ma, D.-S.; Yao, Y.-G. From node-line semimetals to large-gap quantum spin Hall states in a family of pentagonal group-IVA chalcogenide. Phys. Rev. B 2018, 97, 125312.

    Article  Google Scholar 

  19. ElGhazali, M. A.; Naumov, P. G.; Mirhosseini, H.; Süß, V.; Müchler, L.; Schnelle, W.; Felser, C.; Medvedev, S. A. Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdSe2. Phys. Rev. B 2017, 96, 060509.

    Article  Google Scholar 

  20. Sun, J. F.; Shi, H. L.; Siegrist, T.; Singh, D. J. Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Appl. Phys. Lett. 2015, 107, 153902.

    Article  Google Scholar 

  21. Lin, J. H.; Zuluaga, S.; Yu, P.; Liu, Z.; Pantelides, S. T.; Suenaga, K. Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett. 2017, 119, 016101.

    Article  Google Scholar 

  22. Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 2008, 130, 16739–16744.

    Article  Google Scholar 

  23. Kim, J.; Yun, W. S.; Lee, J. D. Optical absorption of armchair MoS2 nanoribbons: Enhanced correlation effects in the reduced dimension. J. Phys. Chem. C 2015, 119, 13901–13906.

    Article  Google Scholar 

  24. An, X.-T.; Xiao, J.; Tu, M. W.-Y.; Yu, H. Y.; Fal’ko, V. I.; Yao, W. Realization of valley and spin pumps by scattering at nonmagnetic disorders. Phys. Rev. Lett. 2017, 118, 096602.

    Article  Google Scholar 

  25. Zhang, Z. W.; Xie, Y. E.; Peng, Q.; Chen, Y. P. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons. Sci. Rep. 2016, 6, 21639.

    Article  Google Scholar 

  26. Cheng, F.; Xu, H.; Xu, W. T.; Zhou, P. J.; Martin, J.; Loh, K. P. Controlled growth of 1D MoSe2 nanoribbons with spatially modulated edge states. Nano Lett. 2017, 17, 1116–1120.

    Article  Google Scholar 

  27. Chen, Y. X.; Cui, P.; Ren, X. B.; Zhang, C. D.; Jin, C. H.; Zhang, Z. Y.; Shih, C.-K. Fabrication of MoSe2 nanoribbons via an unusual morphological phase transition. Nat. Commun. 2017, 8, 15135.

    Article  Google Scholar 

  28. Zhang, C. D.; Lian, J. C.; Yi, W.; Jiang, Y. H.; Liu, L. W.; Hu, H.; Xiao, W. D.; Du, S. X.; Sun, L. L.; Gao, H.-J. Surface structures of black phosphorus investigated with scanning tunneling microscopy. J. Phys. Chem. C 2009, 113, 18823–18826.

    Article  Google Scholar 

  29. Özçelik, V. O.; Azadani, J. G.; Yang, C.; Koester, S. J.; Low, T. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 2016, 94, 035125.

    Article  Google Scholar 

  30. Lauffer, P.; Emtsev, K. V.; Graupner, R.; Seyller, T.; Ley, L.; Reshanov, S. A.; Weber, H. B. Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy. Phys. Rev. B 2008, 77, 155426.

    Article  Google Scholar 

  31. Wang, Q. Y.; Zhang, W. H.; Wang, L. L.; He, K.; Ma, X. C.; Xue, Q. K. Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates. J. Phys.: Condens. Matter 2013, 25, 095002.

    Google Scholar 

  32. Riedl, C.; Starke, U.; Bernhardt, J.; Franke, M.; Heinz, K. Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B 2007, 76, 245406.

    Article  Google Scholar 

  33. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  34. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  35. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  36. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  37. Tersoff, J.; Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 1985, 31, 805–813.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Nos. 61390501, 61622116 and 61471337), the Chinese Academy of Sciences (Nos. XDPB0601 and XDPB0801) and the CAS Pioneer Hundred Talents Program. Y. Y. Z. would also thank Beijing Nova Program (No. Z181100006218023). A portion of the research was performed in CAS Key Laboratory of Vacuum Physics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Lin or Hong-Jun Gao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, E., Wang, D., Fan, P. et al. Construction of bilayer PdSe2 on epitaxial graphene. Nano Res. 11, 5858–5865 (2018). https://doi.org/10.1007/s12274-018-2090-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2090-0

Keywords

Navigation