Nano Research

, Volume 11, Issue 9, pp 4923–4930 | Cite as

Abnormal n-type doping effect in nitrogen-doped tungsten diselenide prepared by moderate ammonia plasma treatment

  • Zhepeng Jin
  • Zhi Cai
  • Xiaosong Chen
  • Dacheng Wei
Research Article


To facilitate potential applications of tungsten diselenide (WSe2) in electronics, controllable doping is of great importance. As an industrially compatible technology, plasma treatment has been used to dope two-dimensional (2D) materials. However, owing to the strong etching effect in transition metal dichalcogenides (TMDCs), it is difficult to controllably dope 2D WSe2 crystals by plasma. Herein, we develop a moderate ammonia plasma treatment method to prepare nitrogen-doped WSe2 with controlled nitrogen content. Interestingly, Raman, photoluminescence, X-ray photoelectron spectroscopy, and electrical measurements reveal abnormal n-doping behavior of nitrogen-doped WSe2, which is attributed to selenium anion vacancy introduced by hydrogen species in ammonia plasma. Nitrogen-doped WSe2 with abnormal n-doping behavior has potential applications in future TMDCs-based electronics.


nitrogen-doped tungsten diselenide n-type doping ammonia plasma anion vacancy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Program for Thousand Young Talents of China, the National Natural Science Foundation of China (Nos. 51773041, 21603038 and 21544001), Shanghai Committee of Science and Technology in China (No. 18ZR1404900), and Fudan University.

Supplementary material

12274_2018_2087_MOESM1_ESM.pdf (1.7 mb)
Abnormal n-type doping effect in nitrogen-doped tungsten diselenide prepared by moderate ammonia plasma treatment


  1. [1]
    Zhang Y. J.; Oka, T.; Suzuki, R.; Ye, J. T.; Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 2014, 344, 725–728.CrossRefGoogle Scholar
  2. [2]
    Kim, K.; Larentis, S.; Fallahazad, B.; Lee, K.; Xue, J. M.; Dillen, D. C.; Corbet, C. M.; Tutuc, E. Band alignment in WSe2–graphene heterostructures. ACS Nano 2015, 9, 4527–4532.CrossRefGoogle Scholar
  3. [3]
    Ye, L.; Wang, P.; Luo, W. J.; Gong, F.; Liao, L.; Liu, T. D.; Tong, L.; Zang, J. F.; Xu, J. B.; Hu, W. D. Highly polarization sensitive infrared photodetector based on black phosphoruson- WSe2 photogate vertical heterostructure. Nano Energy 2017, 37, 53–60.CrossRefGoogle Scholar
  4. [4]
    Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 2015, 15, 709–713.CrossRefGoogle Scholar
  5. [5]
    Salehzadeh, O.; Tran, N. H.; Liu, X.; Shih, I.; Mi, Z. Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS2 light-emitting devices. Nano Lett. 2014, 14, 4125–4130.CrossRefGoogle Scholar
  6. [6]
    Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42–46.CrossRefGoogle Scholar
  7. [7]
    Chen, K. X.; Luo, Z. Y.; Mo, D. C.; Lyu, S. S. WSe2 nanoribbons: New high-performance thermoelectric materials. Phys. Chem. Chem. Phys. 2016, 18, 16337–16344.CrossRefGoogle Scholar
  8. [8]
    Jo, S. H.; Kang, D. H.; Shim, J.; Jeon, J.; Jeon, M. H.; Yoo, G.; Kim, J.; Lee, J.; Yeom, G. Y.; Lee, S. et al. A high-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv. Mater. 2016, 28, 4824–4831.CrossRefGoogle Scholar
  9. [9]
    Duclaux, L. Review of the doping of carbon nanotubes (multiwalled and single-walled). Carbon 2002, 40, 1751–1764.CrossRefGoogle Scholar
  10. [10]
    Sim, D. M.; Kim, M.; Yim, S.; Choi, M. J.; Choi, J.; Yoo, S.; Jung, Y. S. Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano 2015, 9, 12115–12123.CrossRefGoogle Scholar
  11. [11]
    Lei, S. D.; Wang, X. F.; Li, B.; Kang, J. H.; He, Y. M.; George, A.; Ge, L. H.; Gong, Y. J.; Dong, P.; Jin, Z. H. et al. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid–base chemistry. Nat. Nanotechnol. 2016, 11, 465–471.CrossRefGoogle Scholar
  12. [12]
    Fang, H.; Tosun, M.; Srol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991–1995.CrossRefGoogle Scholar
  13. [13]
    Zhao, P. D.; Kiriya, D.; Zcatl, A.; Zhang, C. X.; Tosun, M.; Liu, Y. S.; Hettick, M.; Kang, J. S.; McDonnell, S.; Santosh, K. C. et al. Air stable p-doping of WSe2 by covalent functionalization. ACS Nano 2014, 8, 10808–10814.CrossRefGoogle Scholar
  14. [14]
    Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788–3792.CrossRefGoogle Scholar
  15. [15]
    Lin, Y. C.; Lin, C. Y.; Chiu, P. W. Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 2010, 96, 133110.CrossRefGoogle Scholar
  16. [16]
    Azcatl, A.; Qin, X. Y.; Prakash, A.; Zhang, C. X.; Cheng, L. X.; Wang, Q. X.; Lu, N.; Kim, M. J.; Kim, J.; Cho, K. et al. Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett. 2016, 16, 5437–5443.CrossRefGoogle Scholar
  17. [17]
    Chen, M. K.; Nam, H.; Wi, S. J.; Ji, L.; Ren, X.; Bian, L. F.; Lu, S. L.; Liang, X. G. Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping. Appl. Phys. Lett. 2013, 103, 142110.CrossRefGoogle Scholar
  18. [18]
    Liu, Y. L.; Nan, H. Y.; Wu, X.; Pan, W.; Wang, W. H.; Bai, J.; Zhao, W. W.; Sun, L. T.; Wang, X. R.; Ni, Z. H. Layer-by-layer thinning of MoS2 by plasma. ACS Nano 2013, 7, 4202–4209.CrossRefGoogle Scholar
  19. [19]
    Dolui, K.; Rungger, I.; Das Pemmaraju, C.; Sanvito, S. Possible doping strategies for MoS2 monolayers: An ab initio study. Phys. Rev. B 2013, 88, 075420.CrossRefGoogle Scholar
  20. [20]
    Liu, B. L.; Fathi, M.; Chen, L.; Abbas, A.; Ma, Y. Q.; Zhou, C. W. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 2015, 9, 6119–6127.CrossRefGoogle Scholar
  21. [21]
    Narushima, K.; Yamashita, N.; Fukuoka, M.; Inagaki, N.; Isono, Y.; Islam, M. R. Surface modifications of polyester films by ammonia plasma. Jpn. J. Appl. Phys. 2007, 46, 4238.CrossRefGoogle Scholar
  22. [22]
    Milled, G. P.; Baird, J. K. Radio frequency plasma decomposition of ammonia: A comparison with radiation chemistry using the G value. J. Phys. Chem. 1993, 97, 10984–10988.CrossRefGoogle Scholar
  23. [23]
    Ma, Y. Q.; Liu, B. L.; Zhang, A. Y.; Chen, L.; Fathi, M.; Shen, C. F.; Abbas, A. N.; Ge, M. Y.; Mecklenburg, M.; Zhou, C. W. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 2015, 9, 7383–7391.CrossRefGoogle Scholar
  24. [24]
    Tosun, M.; Chan, L.; Amani, M.; Roy, T.; Ahn, G. H.; Taheri, P.; Carraro, C.; Ager, J. W.; Maboudian, R.; Javey, A. Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment. ACS Nano 2016, 10, 6853–6860.CrossRefGoogle Scholar
  25. [25]
    Xie, L. M.; Jiao, L. Y.; Dai, H. J. Selective etching of graphene edges by hydrogen plasma. J. Am. Chem. Soc. 2010, 132, 14751–14753.CrossRefGoogle Scholar
  26. [26]
    Chen, K.; Kiriya, D.; Hettick, M.; Tosun, M.; Ha, T. J.; Madhvapathy, S. R.; Desai, S.; Sachid, A.; Javey, A. Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density. APL Mater. 2014, 2, 092504.CrossRefGoogle Scholar
  27. [27]
    Hu, C.; Dong, D. D.; Yang, X. K.; Qiao, K. K.; Yang, D.; Deng, H.; Yuan, S. J.; Khan, J.; Lan, Y.; Song, H. S. et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2 toward high performance and broadband phototransistors. Adv. Funct. Mater. 2017, 27, 1603605.CrossRefGoogle Scholar
  28. [28]
    Wu, Z. T.; Luo, Z. Z.; Shen, Y. T.; Zhao, W. W.; Wang, W. H.; Nan, H. Y.; Guo, X. T.; Sun, L. T.; Wang, X. R.; You, Y. M. et al. Defects as a factor limiting carrier mobility in WSe2: A spectroscopic investigation. Nano Res. 2016, 9, 3622–3631.CrossRefGoogle Scholar
  29. [29]
    Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.CrossRefGoogle Scholar
  30. [30]
    Crowther, A. C.; Ghassaei, A.; Jung, N.; Brus, L. E. Strong charge-transfer doping of 1 to 10 layer graphene by NO2. ACS Nano 2012, 6, 1865–1875.CrossRefGoogle Scholar
  31. [31]
    She, Y. G.; Mai, Y. W.; McBride, W. E.; Zhang, Q. C.; McKenzie, D. R. Structural properties and nitrogen-loss characteristics in sputtered tungsten nitride films. Thin Solid Films 2000, 372, 257–264.CrossRefGoogle Scholar
  32. [32]
    Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.CrossRefGoogle Scholar
  33. [33]
    Nipane, A.; Karmakar, D.; Kaushik, N.; Karande, S.; Lodha, S. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 2016, 10, 2128–2137.CrossRefGoogle Scholar
  34. [34]
    Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275–6280.CrossRefGoogle Scholar
  35. [35]
    Liu, J. X.; Zeng, M. Q.; Wang, L. X.; Chen, Y. T.; Xing, Z.; Zhang, T.; Liu, Z.; Zuo, J. L.; Nan, F.; Mendes, R. G. et al. Ultrafast self-limited growth of strictly monolayer WSe2 crystals. Small 2016, 12, 5741–5749.CrossRefGoogle Scholar
  36. [36]
    Chen, J. Y.; Liu, B.; Liu, Y. P.; Tang, W.; Nai, C. T.; Li, L. J.; Zheng, J.; Gao, L. B.; Zheng, Y.; Shin, H. S. et al. Chemical vapor deposition of large-sized hexagonal WSe2 crystals on dielectric substrates. Adv. Mater. 2015, 27, 6722–6727.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhepeng Jin
    • 1
  • Zhi Cai
    • 1
  • Xiaosong Chen
    • 1
  • Dacheng Wei
    • 1
  1. 1.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan UniversityShanghaiChina

Personalised recommendations