Advertisement

Nano Research

, Volume 11, Issue 9, pp 4489–4506 | Cite as

Engineering nanoparticles for targeting rheumatoid arthritis: Past, present, and future trends

  • Isabel Matos Oliveira
  • Cristiana Gonçalves
  • Rui Luís Reis
  • Joaquim Miguel Oliveira
Review Article

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial joint inflammation and cartilage and bone tissue destruction. Although there exist some treatment strategies for RA, they are not completely safe and effective. Therefore, it is important to develop and test new drugs for RA that specifically target inflamed/swollen joints and simultaneously attenuate other possible damages to healthy tissues. Nanotechnology can be a good alternative to consider when envisioning precise medication for treating RA. Through the use of nanoparticles, it is possible to increase bioavailability and bioactivity of therapeutics and enable selective targeting to damaged joints. Herein, recent studies using nanoparticles for the treatment of RA, namely with liposomes, polymeric nanoparticles, dendrimers, and metallic nanoparticles, have been reviewed. These therapeutic strategies have shown great promise in improving the treatment over that by traditional drugs. The results of these studies confirm that feasibility of the use of nanoparticles is mainly due to their biocompatibility, low toxicity, controlled release, and selective drug delivery to inflamed tissues in animal RA models. Therefore, it is possible to claim that nanotechnology will, in the near future, play a crucial role in advanced treatments and patient-specific therapies for human diseases such as RA.

Keywords

nanoparticles liposomes dendrimers rheumatoid arthritis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank the financial support under the ARTICULATE project (No. QREN-13/SI/2011-23189). This study was also funded by the Portuguese Foundation for Science and Technology (FCT) project OsteoCart (No. PTDC/CTM-BPC/115977/2009), as well as the European Union’s FP7 Programme under grant agreement no REGPOT-CT2012-316331-POLARIS. The FCT distinction attributed to J. M. O. under the Investigator FCT program (No. IF/00423/2012) is also greatly acknowledged. C. G. also wished to acknowledge FCT for supporting her research (No. SFRH/BPD/94277/2013).

Supplementary material

12274_2018_2071_MOESM1_ESM.pdf (579 kb)
Engineering nanoparticles for targeting rheumatoid arthritis: Past, present, and future trends

References

  1. [1]
    Barnes, T.; Moots, R. Targeting nanomedicines in the treatment of rheumatoid arthritis: Focus on certolizumab pegol. Int. J. Nanomedicine 2007, 2, 3–7.CrossRefGoogle Scholar
  2. [2]
    Howard, K. A.; Paludan, S. R.; Behlke, M. A.; Besenbacher, F.; Deleuran, B.; Kjems, J. Chitosan/siRNA nanoparticle-mediated TNF-α knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol. Ther. 2009, 17, 162–168.CrossRefGoogle Scholar
  3. [3]
    Markides, H.; Kehoe, O.; Morris, R. H.; El Haj, A. J. Whole body tracking of superparamagnetic iron oxide nanoparticle-labelled cells—A rheumatoid arthritis mouse model. Stem Cell Res. Ther. 2013, 4, 126.CrossRefGoogle Scholar
  4. [4]
    Ishihara, T.; Kubota, T.; Choi, T.; Higaki, M. Treatment of experimental arthritis with stealth-type polymeric nanoparticles encapsulating betamethasone phosphate. J. Pharmacol. Exp. Ther. 2009, 329, 412–417.CrossRefGoogle Scholar
  5. [5]
    McInnes, I. B.; Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 2007, 7, 429–442.CrossRefGoogle Scholar
  6. [6]
    Marrelli, A.; Cipriani, P.; Liakouli, V.; Carubbi, F.; Perricone, C.; Perricone, R.; Giacomelli, R. Angiogenesis in rheumatoid arthritis: A disease specific process or a common response to chronic inflammation? Autoimmun. Rev. 2011, 10, 595–598.CrossRefGoogle Scholar
  7. [7]
    Pham, C. T. N. Nanotherapeutic approaches for the treatment of rheumatoid arthritis. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2011, 3, 607–619.Google Scholar
  8. [8]
    Oda, K.; Minata, M. Drug free remission after steroiddependent disappearance of lymphoproliferative disorder in rheumatoid arthritis patient treated with TNF-alpha blockade: Case study. SpringerPlus 2015, 4, 41.CrossRefGoogle Scholar
  9. [9]
    Stoll, J. G.; Yasothan, U. Rheumatoid arthritis market. Nat. Rev. Drug Discov. 2009, 8, 693–694.CrossRefGoogle Scholar
  10. [10]
    Hwang, J.; Rodgers, K.; Oliver, J. C.; Schluep, T. α-Methylprednisolone conjugated cyclodextrin polymer-based nanoparticles for rheumatoid arthritis therapy. Int. J. Nanomedicine 2008, 3, 359–371.Google Scholar
  11. [11]
    Rubinstein, I.; Weinberg, G. L. Nanomedicines for chronic non-infectious arthritis: The clinician’s perspective. Maturitas 2012, 73, 68–73.CrossRefGoogle Scholar
  12. [12]
    Boulaiz, H.; Alvarez, P. J.; Ramirez, A.; Marchal, J. A.; Prados, J.; Rodríguez-Serrano, F.; Perán, M.; Melguizo, C.; Aranega, A. Nanomedicine: Application areas and development prospects. Int. J. Mol. Sci. 2011, 12, 3303–3321.CrossRefGoogle Scholar
  13. [13]
    Zhang, L.; Gu, F. X.; Chan, J. M.; Wang, A. Z.; Langer, R. S.; Farokhzad, O. C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 2008, 83, 761–769.CrossRefGoogle Scholar
  14. [14]
    Mukherjee, B. Nanosize drug delivery system. Curr. Pharm. Biotechnol. 2013, 14, 1221.CrossRefGoogle Scholar
  15. [15]
    Parveen, S.; Misra, R.; Sahoo, S. K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 2012, 8, 147–166.CrossRefGoogle Scholar
  16. [16]
    Merisko-Liversidge, E. M.; Liversidge, G. G. Drug nanoparticles: Formulating poorly water-soluble compounds. Toxicol. Pathol. 2008, 36, 43–48.CrossRefGoogle Scholar
  17. [17]
    Kahlenberg, J. M.; Fox, D. A. Advances in the medical treatment of rheumatoid arthritis. Hand Clin. 2011, 27, 11–20.CrossRefGoogle Scholar
  18. [18]
    Abhilash, M. Potential applications of Nanoparticles. Int. J. Pharm. Bio Sci. 2010, 1, 1–12.Google Scholar
  19. [19]
    Mudshinge, S. R.; Deore, A. B.; Patil, S.; Bhalgat, C. M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharmaceut. J. 2011, 19, 129–141.CrossRefGoogle Scholar
  20. [20]
    Surendiran, A.; Sandhiya, S.; Pradhan, S. C.; Adithan, C. Novel applications of nanotechnology in medicine. Indian J. Med. Res. 2009, 130, 689–701.Google Scholar
  21. [21]
    Malam, Y.; Loizidou, M.; Seifalian, A. M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 2009, 30, 592–599.CrossRefGoogle Scholar
  22. [22]
    Foong, W. C.; Green, K. L. Association of liposomeentrapped [3H] methotrexate with thioglycollate-elicited macrophages in-vitro. J. Pharm. Pharmacol. 1988, 40, 171–175.CrossRefGoogle Scholar
  23. [23]
    Tarner, I. H.; Müller-Ladner, U. Drug delivery systems for the treatment of rheumatoid arthritis. Exp. Opin. Drug Deliv. 2008, 5, 1027–1037.CrossRefGoogle Scholar
  24. [24]
    Kapoor, B.; Singh, S. K.; Gulati, M.; Gupta, R.; Vaidya, Y. Application of liposomes in treatment of rheumatoid arthritis: Quo vadis. Sci. World J. 2014, 2014, 978351.CrossRefGoogle Scholar
  25. [25]
    Love, W. G.; Amos, N.; Kellaway, I. W.; Williams, B. D. Specific accumulation of technetium-99m radiolabelled, negative liposomes in the inflamed paws of rats with adjuvant induced arthritis: Effect of liposome size. Ann. Rheum. Dis. 1989, 48, 143–148.CrossRefGoogle Scholar
  26. [26]
    van Lent, P. L. E. M.; Holthuysen, A. E. M.; van Rooijen, N.; van De Putte, L. B. A.; van Den Berg, W. B. Local removal of phagocytic synovial lining cells by clodronate-liposomes decreases cartilage destruction during collagen type II arthritis. Ann. Rheum. Dis. 1998, 57, 408–413.CrossRefGoogle Scholar
  27. [27]
    Ulbrich, W.; Lamprecht, A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. J. Roy. Soc. Interface 2010, 7(Suppl 1), S55–S66.CrossRefGoogle Scholar
  28. [28]
    van den Hoven, J. M.; van Tomme, S. R.; Metselaar, J. M.; Nuijen, B.; Beijnen, J. H.; Storm, G. Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol. Pharmaceutics 2011, 8, 1002–1015.CrossRefGoogle Scholar
  29. [29]
    Williams, A. S.; Camilleri, J. P.; Williams, B. D. Suppression of adjuvant-induced arthritis by liposomally conjugated methotrexate in the rat. Rheumatology 1994, 33, 530–533.CrossRefGoogle Scholar
  30. [30]
    Watson-Clark, R. A.; Banquerigo, M. L.; Shelly, K.; Hawthorne, M. F.; Brahn, E. Model studies directed toward the application of boron neutron capture therapy to rheumatoid arthritis: Boron delivery by liposomes in rat collagen-induced arthritis. Proc. Natl. Acad. Sci. USA 1998, 95, 2531–2534.CrossRefGoogle Scholar
  31. [31]
    Chowdhary, R. K.; Ratkay, L. G.; Canaan, A. J.; Waterfield, J. D.; Richter, A. M.; Levy, J. G. Uptake of Verteporfin® by articular tissues following systemic and intra-articular administration. Biopharm. Drug Dispos. 1998, 19, 395–400.CrossRefGoogle Scholar
  32. [32]
    Highton, J.; Guévremont, D.; Thomson, J.; Carlisle, B.; Tucker, I. A trial of clodronate-liposomes as anti-macrophage treatment in a sheep model of arthritis. Clin. Exp. Rheumatol. 1999, 17, 43–48.Google Scholar
  33. [33]
    Corvo, M. L.; Boerman, O. C.; Oyen, W. J. G.; Jorge, J. C. S.; Cruz, M. E. M.; Crommelin, D. J. A.; Storm, G. Subcutaneous administration of superoxide dismutase entrapped in long circulating liposomes: In vivo fate and therapeutic activity in an inflammation model. Pharm. Res. 2000, 17, 600–606.CrossRefGoogle Scholar
  34. [34]
    Srinath, P.; Chary, M. G.; Vyas, S. P.; Diwan, P. V. Long-circulating liposomes of indomethacin in arthritic rats—A biodisposition study. Pharm. Acta Helv. 2000, 74, 399–404.CrossRefGoogle Scholar
  35. [35]
    Čeponis, A.; Waris, E.; Mönkkönen, J.; Laasonen, L.; Hyttinen, M.; Solovieva, S. A.; Hanemaaijer, R.; Bitsch, A.; Konttinen, Y. T. Effects of low-dose, noncytotoxic, intraarticular liposomal clodronate on development of erosions and proteoglycan loss in established antigen-induced arthritis in rabbits. Arthritis Rheum. 2001, 44, 1908–1916.CrossRefGoogle Scholar
  36. [36]
    Trif, M.; Guillen, C.; Vaughan, D. M.; Telfer, J. M.; Brewer, J. M.; Roseanu, A.; Brock, J. H. Liposomes as possible carriers for lactoferrin in the local treatment of inflammatory diseases. Exp. Biol. Med. 2001, 226, 559–564.CrossRefGoogle Scholar
  37. [37]
    Trif, M.; Roseanu, A.; Brock, J. H.; Brewer, J. M. Designing lipid nanostructures for local delivery of biologically active macromolecules. J. Liposome Res. 2007, 17, 237–248.CrossRefGoogle Scholar
  38. [38]
    Everts, M.; Koning, G. A.; Kok, R. J.; Ásgeirsdóttir, S. A.; Vestweber, D.; Meijer, D. K. F.; Storm, G.; Molema, G. In vitro cellular handling and in vivo targeting of E-selectindirected immunoconjugates and immunoliposomes used for drug delivery to inflamed endothelium. Pharm. Res. 2003, 20, 64–72.CrossRefGoogle Scholar
  39. [39]
    Mitragotri, S.; Yoo, J.-W. Designing micro- and nanoparticles for treating rheumatoid arthritis. Arch. Pharm. Res. 2011, 34, 1887–1897.CrossRefGoogle Scholar
  40. [40]
    Metselaar, J. M.; Wauben, M. H. M.; Wagenaar-Hilbers, J. P. A.; Boerman, O. C.; Storm, G. Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arth. Rheumatol. 2003, 48, 2059–2066.CrossRefGoogle Scholar
  41. [41]
    Metselaar, J. M.; Van den Berg, W. B.; Holthuysen, A. E. M.; Wauben, M. H. M.; Storm, G.; Van Lent, P. L. E. M. Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type II arthritis. Ann. Rheum. Dis. 2004, 63, 348–353.CrossRefGoogle Scholar
  42. [42]
    Harigai, T.; Hagiwara, H.; Ogawa, Y.; Ishizuka, T.; Kaneda, S.; Kimura, J. Prednisolone phosphate-containing TRX-20 liposomes inhibit cytokine and chemokine production in human fibroblast-like synovial cells: A novel approach to rheumatoid arthritis therapy. J. Pharm. Pharmacol. 2007, 59, 137–143.CrossRefGoogle Scholar
  43. [43]
    Koning, G. A.; Schiffelers, R. M.; Wauben, M. H. M.; Kok, R. J.; Mastrobattista, E.; Molema, G.; ten Hagen, T. L. M.; Storm, G. Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate-containing RGD peptide liposomes inhibits experimental arthritis. Arth. Rheumatol. 2006, 54, 1198–1208.CrossRefGoogle Scholar
  44. [44]
    Hattori, Y.; Sakaguchi, M.; Maitani, Y. Folate-linked lipidbased nanoparticles deliver a NFκB decoy into activated murine macrophage-like RAW264.7 cells. Biol. Pharm. Bull. 2006, 29, 1516–1520.CrossRefGoogle Scholar
  45. [45]
    Rauchhaus, U.; Kinne, R. W.; Pohlers, D.; Wiegand, S.; Wölfert, A.; Gajda, M.; Bräuer, R.; Panzner, S. Targeted delivery of liposomal dexamethasone phosphate to the spleen provides a persistent therapeutic effect in rat antigen-induced arthritis. Ann. Rheum. Dis. 2009, 68, 1933–1934.CrossRefGoogle Scholar
  46. [46]
    Richards, P. J.; Williams, A. S.; Goodfellow, R. M.; Williams, B. D. Liposomal clodronate eliminates synovial macrophages, reduces inflammation and ameliorates joint destruction in antigen-induced arthritis. Rheumatology 1999, 38, 818–825.CrossRefGoogle Scholar
  47. [47]
    Richards, P. J.; Williams, B. D.; Williams, A. S. Suppression of chronic streptococcal cell wall-induced arthritis in Lewis rats by liposomal clodronate. Rheumatology 2001, 40, 978–987.CrossRefGoogle Scholar
  48. [48]
    Simões, S.; Delgado, T. C.; Lopes, R. M.; Jesus, S.; Ferreira, A. A.; Morais, J. A.; Cruz, M. E. M.; Corvo, M. L.; Martins, M. B. F. Developments in the rat adjuvant arthritis model and its use in therapeutic evaluation of novel non-invasive treatment by SOD in Transfersomes. J. Control. Release 2005, 103, 419–434.CrossRefGoogle Scholar
  49. [49]
    Gaspar, M. M.; Boerman, O. C.; Laverman, P.; Corvo, M. L.; Storm, G.; Cruz, M. E. M. Enzymosomes with surface-exposed superoxide dismutase: In vivo behaviour and therapeutic activity in a model of adjuvant arthritis. J. Control. Release 2007, 117, 186–195.CrossRefGoogle Scholar
  50. [50]
    Khoury, M.; Louis-Plence, P.; Escriou, V.; Noel, D.; Largeau, C.; Cantos, C.; Scherman, D.; Jorgensen, C.; Apparailly, F. Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor α in experimental arthritis. Arth. Rheumatol. 2006, 54, 1867–1877.CrossRefGoogle Scholar
  51. [51]
    Gerlag, D. M.; Borges, E.; Tak, P. P.; Ellerby, H. M.; Bredesen, D. E.; Pasqualini, R.; Ruoslahti, E.; Firestein, G. S. Suppression of murine collagen-induced arthritis by targeted apoptosis of synovial neovasculature. Arth. Res. Ther. 2001, 3, 357.CrossRefGoogle Scholar
  52. [52]
    Kim, W. U.; Lee, W. K.; Ryoo, J. W.; Kim, S. H.; Kim, J.; Youn, J.; Min, S. Y.; Bae, E. Y.; Hwang, S. Y.; Park, S. H. et al. Suppression of collagen-induced arthritis by single administration of poly (lactic-co-glycolic acid) nanoparticles entrapping type II collagen: A novel treatment strategy for induction of oral tolerance. Arth. Rheumatol. 2002, 46, 1109–1120.CrossRefGoogle Scholar
  53. [53]
    Horisawa, E.; Kubota, K.; Tuboi, I.; Sato, K.; Yamamoto, H.; Takeuchi, H.; Kawashima, Y. Size-dependency of DL-lactide/ glycolide copolymer particulates for intra-articular delivery system on phagocytosis in rat synovium. Pharm. Res. 2002, 19, 132–139.CrossRefGoogle Scholar
  54. [54]
    Butoescu, N.; Jordan, O.; Doelker, E. Intra-articular drug delivery systems for the treatment of rheumatic diseases: A review of the factors influencing their performance. Eur. J. Pharm. Biopharm. 2009, 73, 205–218.CrossRefGoogle Scholar
  55. [55]
    Fiehn, C.; Müller-Ladner, U.; Gay, S.; Krienke, S.; Freudenberg-Konrad, S.; Funk, J.; Ho, A. D.; Sinn, H.; Wunder, A. Albumin-coupled methotrexate (MTX-HSA) is a new anti-arthritic drug which acts synergistically to MTX. Rheumatology 2004, 43, 1097–1105.CrossRefGoogle Scholar
  56. [56]
    Ren, K.; Dusad, A.; Dong, R.; Quan, L. D. Albumin as a delivery carrier for rheumatoid arthritis. J. Nanomed. Nanotechol. 2013, 4, 176.Google Scholar
  57. [57]
    Higaki, M.; Ishihara, T.; Izumo, N.; Takatsu, M.; Mizushima, Y. Treatment of experimental arthritis with poly (D, L-lactic/ glycolic acid) nanoparticles encapsulating betamethasone sodium phosphate. Ann. Rheum. Dis. 2005, 64, 1132–1136.CrossRefGoogle Scholar
  58. [58]
    Patel, J.; Jigar, B.; Shah, H.; Patel, D. Novel drug delivery technologies for the treatment of rheumatoid arthritis. Internet J. Med. Technol. 2008, 5, 1–11.Google Scholar
  59. [59]
    Liu, M. X.; Dong, J.; Yang, Y. J.; Yang, X. L.; Xu, H. B. Anti-inflammatory effects of triptolide loaded poly (D, L-lactic acid) nanoparticles on adjuvant-induced arthritis in rats. J. Ethnopharmacol. 2005, 97, 219–225.CrossRefGoogle Scholar
  60. [60]
    Mansouri, S.; Cuie, Y.; Winnik, F.; Shi, Q.; Lavigne, P.; Benderdour, M.; Beaumont, E.; Fernandes, J. C. Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials 2006, 27, 2060–2065.CrossRefGoogle Scholar
  61. [61]
    Wang, D.; Miller, S. C.; Liu, X.-M.; Anderson, B.; Wang, X. S.; Goldring, S. R. Novel dexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arth. Res. Ther. 2007, 9, R2.CrossRefGoogle Scholar
  62. [62]
    Rothenfluh, D. A.; Bermudez, H.; O’Neil, C. P.; Hubbell, J. A. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat. Mater. 2008, 7, 248–254.CrossRefGoogle Scholar
  63. [63]
    Ishihara, T.; Takahashi, M.; Higaki, M.; Mizushima, Y.; Mizushima, T. Preparation and characterization of a nanoparticulate formulation composed of PEG-PLA and PLA as anti-inflammatory agents. Int. J. Pharm. 2010, 385, 170–175.CrossRefGoogle Scholar
  64. [64]
    Liu, X.-M.; Quan, L.-D.; Tian, J.; Laquer, F. C.; Ciborowski, P.; Wang, D. Syntheses of click PEG-dexamethasone conjugates for the treatment of rheumatoid arthritis. Biomacromolecules 2010, 11, 2621–2628.CrossRefGoogle Scholar
  65. [65]
    Kim, Y.-J.; Chae, S. Y.; Jin, C.-H.; Sivasubramanian, M.; Son, S.; Choi, K. Y.; Jo, D.-G.; Kim, K.; Kwon, I. C.; Lee, K. C. et al. Ionic complex systems based on hyaluronic acid and PEGylated TNF-related apoptosis-inducing ligand for treatment of rheumatoid arthritis. Biomaterials 2010, 31, 9057–9064.CrossRefGoogle Scholar
  66. [66]
    Schmitt, F.; Lagopoulos, L.; Käuper, P.; Rossi, N.; Busso, N.; Barge, J.; Wagnières, G.; Laue, C.; Wandrey, C.; Juillerat-Jeanneret, L. Chitosan-based nanogels for selective delivery of photosensitizers to macrophages and improved retention in and therapy of articular joints. J. Control. Release 2010, 144, 242–250.CrossRefGoogle Scholar
  67. [67]
    Shi, Q.; Wang, H. J.; Tran, C.; Qiu, X. P.; Winnik, F. M.; Zhang, X. L.; Dai, K. R.; Benderdour, M.; Fernandes, J. C. Hydrodynamic delivery of chitosan-folate-DNA nanoparticles in rats with adjuvant-induced arthritis. J. Biomed. Biotechnol. 2011, 2011, Article ID 148763.Google Scholar
  68. [68]
    Scheinman, R. I.; Trivedi, R.; Vermillion, S.; Kompella, U. B. Functionalized STAT1 siRNA nanoparticles regress rheumatoid arthritis in a mouse model. Nanomedicine 2011, 6, 1669–1682.CrossRefGoogle Scholar
  69. [69]
    Ryu, J. H.; Lee, A.; Chu, J. U.; Koo, H.; Ko, C. Y.; Kim, H. S.; Yoon, S. Y.; Kim, B. S.; Choi, K.; Kwon, I. C. et al. Early diagnosis of arthritis in mice with collagen-induced arthritis, using a fluorogenic matrix metalloproteinase 3-specific polymeric probe. Arth. Rheumatol. 2011, 63, 3824–3832.CrossRefGoogle Scholar
  70. [70]
    Park, K. S.; Kang, J. H.; Sa, K. H.; Koo, H. B.; Cho, H. J.; Nam, E. J.; Youn, I. C.; Kim, K. M.; Kim, I. S.; Kwon, I. C. et al. In vivo quantitative measurement of arthritis activity based on hydrophobically modified glycol chitosan in inflammatory arthritis: More active than passive accumulation. Mol. Imaging 2012, 11, 389–400.CrossRefGoogle Scholar
  71. [71]
    Te Boekhorst, B. C. M.; Jensen, L. B.; Colombo, S.; Varkouhi, A. K.; Schiffelers, R. M.; Lammers, T.; Storm, G.; Nielsen, H. M.; Strijkers, G. J.; Foged, C. et al. MRI-assessed therapeutic effects of locally administered PLGA nanoparticles loaded with anti-inflammatory siRNA in a murine arthritis model. J. Control. Release 2012, 161, 772–780.CrossRefGoogle Scholar
  72. [72]
    Rollett, A.; Reiter, T.; Nogueira, P.; Cardinale, M.; Loureiro, A.; Gomes, A.; Cavaco-Paulo, A.; Moreira, A.; Carmo, A. M.; Guebitz, G. M. Folic acid-functionalized human serum albumin nanocapsules for targeted drug delivery to chronically activated macrophages. Int. J. Pharm. 2012, 427, 460–466.CrossRefGoogle Scholar
  73. [73]
    Albuquerque, J.; Moura, C. C.; Sarmento, B.; Reis, S. Solid lipid nanoparticles: A potential multifunctional approach towards rheumatoid arthritis theranostics. Molecules 2015, 20, 11103–11118.CrossRefGoogle Scholar
  74. [74]
    Kim, S.-H.; Kim, J.-H.; You, D. G.; Saravanakumar, G.; Yoon, H. Y.; Choi, K. Y.; Thambi, T.; Deepagan, V. G.; Jo, D.-G.; Park, J. H. Self-assembled dextran sulphate nanoparticles for targeting rheumatoid arthritis. Chem. Commun. 2013, 49, 10349–10351.CrossRefGoogle Scholar
  75. [75]
    Heo, R.; Park, J.-S.; Jang, H. J.; Kim, S.-H.; Shin, J. M.; Suh, Y. D.; Jeong, J. H.; Jo, D.-G.; Park, J. H. Hyaluronan nanoparticles bearing γ-secretase inhibitor: In vivo therapeutic effects on rheumatoid arthritis. J. Control. Release 2014, 192, 295–300.CrossRefGoogle Scholar
  76. [76]
    Lee, S. J.; Lee, A.; Hwang, S. R.; Park, J.-S.; Jang, J.; Huh, M. S.; Jo, D.-G.; Yoon, S.-Y.; Byun, Y.; Kim, S. H. et al. TNF-α gene silencing using polymerized siRNA/thiolated glycol chitosan nanoparticles for rheumatoid arthritis. Mol. Ther. 2014, 22, 397–408.CrossRefGoogle Scholar
  77. [77]
    Bilthariya, U.; Jain, N.; Rajoriya, V.; Jain, A. K. Folateconjugated albumin nanoparticles for rheumatoid arthritistargeted delivery of etoricoxib. Drug Dev. Ind. Pharm. 2015, 41, 95–104.CrossRefGoogle Scholar
  78. [78]
    Oliveira, J. M.; Kotobuki, N.; Marques, A. P.; Pirraco, R. P.; Benesch, J.; Hirose, M.; Costa, S. A.; Mano, J. F.; Ohgushi, H.; Reis, R. L. Surface engineered carboxymethylchitosan/ poly(amidoamine) dendrimer nanoparticles for intracellular targeting. Adv. Funct. Mater. 2008, 18, 1840–1853.CrossRefGoogle Scholar
  79. [79]
    Yu, M. M.; Jie, X.; Xu, L.; Chen, C.; Shen, W. L.; Cao, Y. N.; Lian, G.; Qi, R. Recent advances in dendrimer research for cardiovascular diseases. Biomacromolecules 2015, 16, 2588–2598.CrossRefGoogle Scholar
  80. [80]
    Wu, L.-P.; Ficker, M.; Christensen, J. B.; Trohopoulos, P. N.; Moghimi, S. M. Dendrimers in medicine: Therapeutic concepts and pharmaceutical challenges. Bioconjugate Chem. 2015, 26, 1198–1211.CrossRefGoogle Scholar
  81. [81]
    Chandrasekar, D.; Sistla, R.; Ahmad, F. J.; Khar, R. K.; Diwan, P. V. Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery. J. Biomed. Mater. Res. A 2007, 82, 92–103.CrossRefGoogle Scholar
  82. [82]
    Thomas, T. P.; Goonewardena, S. N.; Majoros, I. J.; Kotlyar, A.; Cao, Z. Y.; Leroueil, P. R.; Baker, J. R. Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arth. Rheumatol. 2011, 63, 2671–2680.CrossRefGoogle Scholar
  83. [83]
    Hayder, M.; Poupot, M.; Baron, M.; Nigon, D.; Turrin, C.-O.; Caminade, A.-M.; Majoral, J.-P.; Eisenberg, R. A.; Fournié, J.-J.; Cantagrel, A. et al. A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Sci. Trans. Med. 2011, 3, 81ra35.CrossRefGoogle Scholar
  84. [84]
    Bosch, X. Dendrimers to treat rheumatoid arthritis. ACS Nano 2011, 5, 6779–6785.CrossRefGoogle Scholar
  85. [85]
    Edmundson, M. C.; Capeness, M.; Horsfall, L. Exploring the potential of metallic nanoparticles within synthetic biology. New Biotechnol. 2014, 31, 572–578.CrossRefGoogle Scholar
  86. [86]
    Mody, V. V.; Siwale, R.; Singh, A.; Mody, H. R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci. 2010, 2, 282–289.CrossRefGoogle Scholar
  87. [87]
    Tsai, C. Y.; Shiau, A. L.; Chen, S. Y.; Chen, Y. H.; Cheng, P. C.; Chang, M. Y.; Chen, D. H.; Chou, C. H.; Wang, C. R.; Wu, C. L. Amelioration of collagen-induced arthritis in rats by nanogold. Arth. Rheumatol. 2007, 56, 544–554.CrossRefGoogle Scholar
  88. [88]
    Chamberland, D. L.; Agarwal, A.; Kotov, N.; Fowlkes, J. B.; Carson, P. L.; Wang, X. D. Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent—An ex vivo preliminary rat study. Nanotechnology 2008, 19, 095101.CrossRefGoogle Scholar
  89. [89]
    Lee, H.; Lee, K.; Kim, I. K.; Park, T. G. Synthesis, characterization, and in vivo diagnostic applications of hyaluronic acid immobilized gold nanoprobes. Biomaterials 2008, 29, 4709–4718.CrossRefGoogle Scholar
  90. [90]
    Huang, Y.-J.; Shiau, A.-L.; Chen, S.-Y.; Chen, Y.-L.; Wang, C.-R.; Tsai, C.-Y.; Chang, M.-Y.; Li, Y.-T.; Leu, C.-H.; Wu, C.-L. Multivalent structure of galectin-1-nanogold complex serves as potential therapeutics for rheumatoid arthritis by enhancing receptor clustering. Eur. Cell. Mater. 2012, 23, 170–181.CrossRefGoogle Scholar
  91. [91]
    Lee, S.-M.; Kim, H. J.; Ha, Y.-J.; Park, Y. N.; Lee, S.-K.; Park, Y.-B.; Yoo, K.-H. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 2013, 7, 50–57.CrossRefGoogle Scholar
  92. [92]
    Lee, H.; Lee, M.-Y.; Bhang, S. H.; Kim, B.-S.; Kim, Y. S.; Ju, J. H.; Kim, K. S.; Hahn, S. K. Hyaluronate–gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano 2014, 8, 4790–4798.CrossRefGoogle Scholar
  93. [93]
    Schulze, K.; Koch, A.; Schöpf, B.; Petri, A.; Steitz, B.; Chastellain, M.; Hofmann, M.; Hofmann, H.; von Rechenberg, B. Intraarticular application of superparamagnetic nanoparticles and their uptake by synovial membrane—An experimental study in sheep. J. Magn. Magn. Mater. 2005, 293, 419–432.CrossRefGoogle Scholar
  94. [94]
    Kim, J.; An, H. Y.; Rieter, W. J.; Esserman, D.; Taylor-Pashow, K. M. L.; Sartor, R. B.; Lin, W.; Tarrant, T. K. Multimodal optical and Gd-based nanoparticles for imaging in inflammatory arthritis. Clin. Exp. Rheumatol. 2009, 27, 580–586.Google Scholar
  95. [95]
    Prasad, S. R.; Elango, K.; Damayanthi, D.; Saranya, J. S. Formulation and evaluation of azathioprine loaded silver nanopartilces for the treatment of rheumatoid arthritis. Asian J. Biomed. Pharm. Sci. 2013, 3, 28–32.Google Scholar
  96. [96]
    Ye, J. S.; Wang, Q.; Zhou, X. F.; Zhang, N. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int. J. Pharm. 2008, 352, 273–279.CrossRefGoogle Scholar
  97. [97]
    Xue, M.; Jiang, Z.-Z.; Wu, T.; Li, J.; Zhang, L.; Zhao, Y.; Li, X.-J.; Zhang, L.-Y.; Yang, S.-Y. Anti-inflammatory effects and hepatotoxicity of Tripterygium-loaded solid lipid nanoparticles on adjuvant-induced arthritis in rats. Phytomedicine 2012, 19, 998–1006.CrossRefGoogle Scholar
  98. [98]
    Nagai, N.; Ito, Y. Effect of solid nanoparticle of indomethacin on therapy for rheumatoid arthritis in adjuvant-induced arthritis rat. Biolog. Pharm. Bull. 2014, 37, 1109–1118.CrossRefGoogle Scholar
  99. [99]
    Zhou, H.-F.; Chan, H. W.; Wickline, S. A.; Lanza, G. M.; Pham, C. T. N. αvβ3-Targeted nanotherapy suppresses inflammatory arthritis in mice. FASEB J. 2009, 23, 2978–2985.CrossRefGoogle Scholar
  100. [100]
    Koo, O. M. Y.; Rubinstein, I.; Önyüksel, H. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharm. Res. 2011, 28, 776–787.CrossRefGoogle Scholar
  101. [101]
    Wishart, D. S.; Knox, C.; Guo, A. C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006, 34, D668–D672.CrossRefGoogle Scholar
  102. [102]
    Bernstein, F. C.; Koetzle, T. F.; Williams, G. J. B.; Meyer, E. F., Jr.; Brice, M. D.; Rodgers, J. R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The Protein Data Bank: A computer-based archival file for macromolecular structures. Arch. Biochem. Biophys. 1978, 185, 584–591.CrossRefGoogle Scholar
  103. [103]
    Barrera, P.; Mulder, S.; Smetsers, A. I.; Storm, G.; Beijnen, J. H.; Metselaar, J. M.; van Riel, P. L. Long-circulating liposomal prednisolone versus pulse intramuscular methylprednisolone in patients with active rheumatoid arthritis. In Arthritis and Rheumatism; Wiley-Liss Div John Wiley & Sons Inc: USA, 2008; pp 3976–3977.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Isabel Matos Oliveira
    • 1
    • 2
  • Cristiana Gonçalves
    • 1
    • 2
  • Rui Luís Reis
    • 1
    • 2
    • 3
  • Joaquim Miguel Oliveira
    • 1
    • 2
    • 3
  1. 1.3B’s Research Group – Biomaterials, Biodegradables, and BiomimeticsHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco, GuimarãesPortugal
  2. 2.ICVS/3B’s-PT Government Associate LaboratoryUniversity of MinhoBragaPortugal
  3. 3.The Discoveries Centre for Regenerative and Precision MedicineHeadquarters at University of MinhoBarco, GuimarãesPortugal

Personalised recommendations