Conformal and continuous deposition of bifunctional cobalt phosphide layers on p-silicon nanowire arrays for improved solar hydrogen evolution

  • Sitaramanjaneva Mouli Thalluri
  • Jerome Borme
  • Kang Yu
  • Junyuan Xu
  • Isilda Amorim
  • Joao Gaspar
  • Liang Qiao
  • Paulo Ferreira
  • Pedro Alpuim
  • Lifeng Liu
Research Article
  • 36 Downloads

Abstract

Vertically aligned p-silicon nanowire (SiNW) arrays have been extensively investigated in recent years as promising photocathodes for solar-driven hydrogen evolution. However, the fabrication of SiNW photocathodes with both high photoelectrocatalytic activity and long-term operational stability using a simple and affordable approach is a challenging task. Herein, we report conformal and continuous deposition of a di-cobalt phosphide (Co2P) layer on lithography-patterned highly ordered SiNW arrays via a cost-effective drop-casting method followed by a low-temperature phosphorization treatment. The as-deposited Co2P layer consists of crystalline nanoparticles and has an intimate contact with SiNWs, forming a well-defined SiNW@Co2P core/shell nanostructure. The conformal and continuous Co2P layer functions as a highly efficient catalyst capable of substantially improving the photoelectrocatalytic activity for the hydrogen evolution reaction (HER) and effectively passivates the SiNWs to protect them from photo-oxidation, thus prolonging the lifetime of the electrode. As aconsequence, the SiNW@Co2P photocathode with an optimized Co2P layer thickness exhibits a high photocurrent density of–21.9 mA·cm−2 at 0 V versus reversible hydrogen electrode and excellent operational stability up to 20 h for solar-driven hydrogen evolution, outperforming many nanostructured silicon photocathodes reported in the literature. The combination of passivation and catalytic functions in a single continuous layer represents a promising strategy for designing high-performance semiconductor photoelectrodes for use insolar-driven water splitting, which may simplify fabrication procedures andpotentially reduce production costs.

Keywords

solar-driven hydrogen evolution silicon nanowire cobalt phosphide photoelectrochemical water splitting drop-casting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was funded by ERDF funds through the Portuguese Operational Programme for Competitiveness and Internationalization COMPETE 2020, and national funds through FCT–The Portuguese Foundation for Science and Technology, under the project “PTDC/ CTM-ENE/2349/2014” (Grant Agreement No. 016660). The work is also partially funded by the Portugal-China Bilateral Collaborative Programme (FCT/21102/28/12/2016/S). L. F. Liu acknowledges the financial support of the FCT Investigator Grant (IF/01595/2014) and Exploratory Grant (IF/01595/2014/CP1247/CT0001). L. Qiao acknowledges the financial support of the Ministry of Science and Technology of China (Grant Agreement No. 2016YFE0132400).

Supplementary material

12274_2018_2070_MOESM1_ESM.mov (1.1 mb)
Supplementary material, approximately 1.13 MB.
12274_2018_2070_MOESM2_ESM.pdf (1.8 mb)
Conformal and continuous deposition of bifunctional cobalt phosphide layers on p-silicon nanowire arrays for improved solar hydrogen evolution

References

  1. [1]
    Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sust. Energ. Rev. 2000, 4, 157–175.CrossRefGoogle Scholar
  2. [2]
    Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.CrossRefGoogle Scholar
  3. [3]
    Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502.CrossRefGoogle Scholar
  4. [4]
    Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.CrossRefGoogle Scholar
  5. [5]
    Reece, S. Y.; Hamel, J. A.; Sung, K.; Jarvi, T. D.; Esswein, A. J.; Pijpers, J. J. H.; Nocera, D. G. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 2011, 334, 645–648.CrossRefGoogle Scholar
  6. [6]
    Sun, K.; Shen, S. H.; Liang, Y. Q.; Burrows, P. E.; Mao, S. S.; Wang, D. L. Enabling silicon for solar-fuel production. Chem. Rev. 2014, 114, 8662–8719.CrossRefGoogle Scholar
  7. [7]
    Candea, R. M.; Kastner, M.; Goodman, R.; Hickok, N. Photoelectrolysis of water-Si in salt-water. J. Appl. Phys. 1976, 47, 2724–2726.CrossRefGoogle Scholar
  8. [8]
    Thalluri, S. M.; Borme, J.; Xiong, D. H.; Xu, J. Y.; Li, W.; Amorim, I.; Alpuim, P.; Gaspar, J.; Fonseca, H.; Qiao, L. et al. Highly-ordered silicon nanowire arrays for photoelectrochemical hydrogen evolution: An investigation on the effect of wire diameter, length and inter-wire spacing. Sustainable Energy Fuels 2018. DOI: 10.1039/C7SE00591A.Google Scholar
  9. [9]
    Bao, X. Q.; Petrovykh, D. Y.; Alpuim, P.; Stroppa, D. G.; Guldris, N.; Fonseca, H.; Costa, M.; Gaspar, J.; Jin, C. H.; Liu, L. F. Amorphous oxygen-rich molybdenum oxysulfide decorated p-type silicon microwire arrays for efficient photoelectrochemical water reduction. Nano Energy 2015, 16, 130–142.CrossRefGoogle Scholar
  10. [10]
    Yuhas, B. D.; Smeigh, A. L.; Samuel, A. P. S.; Shim, Y.; Bag, S.; Douvalis, A. P.; Wasielewski, M. R.; Kanatzidis, M. G. Biomimetic multifunctional porous chalcogels as solar fuel catalysts. J. Am. Chem. Soc. 2011, 133, 7252–7255.CrossRefGoogle Scholar
  11. [11]
    Wang, J.; Zhong, H. X.; Wang, Z. L.; Meng, F. L.; Zhang, X. B. Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 2016, 10, 2342–2348.CrossRefGoogle Scholar
  12. [12]
    Gholamvand, Z.; McAteer, D.; Backes, C.; McEvoy, N.; Harvey, A.; Berner, N. C.; Hanlon, D.; Bradley, C.; Godwin, I.; Rovetta, A. et al. Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe2 to be the most effective hydrogen evolution catalyst. Nanoscale 2016, 8, 5737–5749.CrossRefGoogle Scholar
  13. [13]
    Zhang, L. M.; Liu, C.; Wong, A. B.; Resasco, J.; Yang, P. D. MoS2-wrapped silicon nanowires for photoelectrochemical water reduction. Nano Res. 2015, 8, 281–287.CrossRefGoogle Scholar
  14. [14]
    Xiong, D. H.; Zhang, Q. Q.; Thalluri, S. M.; Xu, J. Y.; Li, W.; Fu, X. L.; Liu, L. F. One-step fabrication of monolithic electrodes comprising Co9S8 particles supported on cobalt foam for efficient and durable oxygen evolution reaction. Chem.-Eur. J. 2017, 23, 8749–8755.CrossRefGoogle Scholar
  15. [15]
    Chen, C. J.; Yang, K. C.; Basu, M.; Lu, T. H.; Lu, Y. R.; Dong, C. L.; Hu, S. F.; Liu, R. S. Wide range pH-tolerable silicon@pyrite cobalt dichalcogenide microwire array photoelectrodes for solar hydrogen evolution. ACS Appl. Mater. Interfaces 2016, 8, 5400–5407.CrossRefGoogle Scholar
  16. [16]
    Siracusano, S.; Baglio, V.; Grigoriev, S. A.; Merlo, L.; Fateev, V. N.; Aricò, A. S. The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis. J. Power Sources 2017, 366, 105–114.CrossRefGoogle Scholar
  17. [17]
    Wang, H. M.; Naghadeh, S. B.; Li, C. H.; Ying, L.; Allen, A. L.; Zhang, J. Z. Enhanced photoelectrochemical and photocatalytic activities of CdS nanowires by surface modification with MoS2 nanosheets. Sci. China Mater. 2018. DOI: 10.1007/s40843-017-9172-x.Google Scholar
  18. [18]
    Ma, X. Y.; Li, J. Q.; An, C. H.; Feng, J.; Chi, Y. X.; Liu, J. X.; Zhang, J.; Sun, Y. G. Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production. Nano Res. 2016, 9, 2284–2293.CrossRefGoogle Scholar
  19. [19]
    Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.CrossRefGoogle Scholar
  20. [20]
    Wang, X. G.; Kolen’ko, Y. V.; Bao, X. Q.; Kovnir, K.; Liu, L. F. One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew. Chem., Int. Ed. 2015, 54, 8188–8192.CrossRefGoogle Scholar
  21. [21]
    Roske, C. W.; Popczun, E. J.; Seger, B.; Read, C. G.; Pedersen, T.; Hansen, O.; Vesborg, P. C. K.; Brunschwig, B. S.; Schaak, R. E.; Chorkendorff, I. et al. Comparison of the performance of CoP-coated and Pt-coated radial junction n+p-silicon microwire-array photocathodes for the sunlight-driven reduction of water to H2(g). J. Phys. Chem. Lett. 2015, 6, 1679–1683.CrossRefGoogle Scholar
  22. [22]
    Bao, X. Q.; Cerqueira, M. F.; Alpuim, P.; Liu, L. F. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution. Chem. Commun. 2015, 51, 10742–10745.CrossRefGoogle Scholar
  23. [23]
    Hellstern, T. R.; Benck, J. D.; Kibsgaard, J.; Hahn, C.; Jaramillo, T. F. Engineering cobalt phosphide (CoP) thin film catalysts for enhanced hydrogen evolution activity on silicon photocathodes. Adv. Energy Mater. 2016, 6, 1501758.CrossRefGoogle Scholar
  24. [24]
    Wang, X. G.; Li, W.; Xiong, D. H.; Petrovykh, D. Y.; Liu, L. F. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2016, 26, 4067–4077.CrossRefGoogle Scholar
  25. [25]
    Li, W.; Gao, X. F.; Wang, X. G.; Xiong, D. H.; Huang, P. P.; Song, W. G.; Bao, X. Q.; Liu, L. F. From water reduction to oxidation: Janus Co-Ni-P nanowires as high-efficiency and ultrastable electrocatalysts for over 3,000 h water splitting. J. Power Sources 2016, 330, 156–166.CrossRefGoogle Scholar
  26. [26]
    Zhang, Y. T.; Chao, S. J.; Wang, X. B.; Han, H. J.; Bai, Z. Y.; Yang, L. Hierarchical Co9S8 hollow microspheres as multifunctional electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Electrochim. Acta 2017, 246, 380–390.CrossRefGoogle Scholar
  27. [27]
    Li, W.; Xiong, D. H.; Gao, X. F.; Song, W. G.; Xia, F.; Liu, L. F. Self-supported Co-Ni-P ternary nanowire electrodes for highly efficient and stable electrocatalytic hydrogen evolution in acidic solution. Catal. Today 2017, 287, 122–129.CrossRefGoogle Scholar
  28. [28]
    Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat. Commun. 2015, 6, 6512.CrossRefGoogle Scholar
  29. [29]
    Ma, B. J.; Xu, H. J.; Lin, K. Y.; Li, J.; Zhan, H. J.; Liu, W. Y.; Li, C. Mo2C as non-noble metal Co-catalyst in Mo2C/CdS composite for enhanced photocatalytic H2 evolution under visible light irradiation. ChemSusChem 2016, 9, 820–824.CrossRefGoogle Scholar
  30. [30]
    Gong, Q. F.; Wang, Y.; Hu, Q.; Zhou, J. G.; Feng, R. F.; Duchesne, P. N.; Zhang, P.; Chen, F. J.; Han, N.; Li, Y. F. et al. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nat. Commun. 2016, 7, 13216.CrossRefGoogle Scholar
  31. [31]
    Yang, Y.; Wang, M.; Zhang, P. L.; Wang, W. H.; Han, H. X.; Sun, L. C. Evident enhancement of photoelectrochemical hydrogen production by electroless deposition of M-B (M = Ni, Co) catalysts on silicon nanowire arrays. ACS Appl. Mater. Interfaces 2016, 8, 30143–30151.CrossRefGoogle Scholar
  32. [32]
    Vrubel, H.; Hu, X. L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem., Int. Ed. 2012, 51, 12703–12706.CrossRefGoogle Scholar
  33. [33]
    Shalom, M.; Ressnig, D.; Yang, X. F.; Clavel, G.; Fellinger, T. P.; Antonietti, M. Nickel nitride as an efficient electrocatalyst for water splitting. J. Mater. Chem. A 2015, 3, 8171–8177.CrossRefGoogle Scholar
  34. [34]
    Bae, D.; Seger, B.; Vesborg, P. C. K.; Hansen, O.; Chorkendorff, I. Strategies for stable water splitting via protected photoelectrodes. Chem. Soc. Rev. 2017, 46, 1933–1954.CrossRefGoogle Scholar
  35. [35]
    Chandrasekaran, S.; Nann, T.; Voelcker, N. H. Nanostructured silicon photoelectrodes for solar water electrolysis. Nano Energy 2015, 17, 308–322.CrossRefGoogle Scholar
  36. [36]
    Dalchiele, E. A.; Martin, F.; Leinen, D.; Marotti, R. E.; Ramos-Barrado, J. R. Single-crystalline silicon nanowire array-based photoelectrochemical cells. J. Electrochem. Soc. 2009, 156, K77–K81.CrossRefGoogle Scholar
  37. [37]
    Jung, J. Y.; Choi, M. J.; Zhou, K. Y.; Li, X. P.; Jee, S. W.; Um, H. D.; Park, M. J.; Park, K. T.; Bang, J. H.; Lee, J. H. Photoelectrochemical water splitting employing a tapered silicon nanohole array. J. Mater. Chem. A 2014, 2, 833–842.CrossRefGoogle Scholar
  38. [38]
    Zhang, B. C.; Wang, H.; He, L.; Duan, C. Y.; Li, F.; Ou, X. M.; Sun, B. Q.; Zhang, X. H. The diameter-dependent photoelectrochemical performance of silicon nanowires. Chem. Commun. 2016, 52, 1369–1372.CrossRefGoogle Scholar
  39. [39]
    Sim, U.; Jeong, H. Y.; Yang, T. Y.; Nam, K. T. Nanostructural dependence of hydrogen production in silicon photocathodes. J. Mater. Chem. A 2013, 1, 5414–5422.CrossRefGoogle Scholar
  40. [40]
    Bazri, B.; Lin, Y. C.; Lu, T. H.; Chen, C. J.; Kowsari, E.; Hu, S. F.; Liu, R. S. A heteroelectrode structure for solar water splitting: Integrated cobalt ditelluride across a TiO2-passivated silicon microwire array. Catal. Sci. Technol. 2017, 7, 1488–1496.CrossRefGoogle Scholar
  41. [41]
    Choi, S. K.; Piao, G. X.; Choi, W.; Park, H. Highly efficient hydrogen production using p-Si wire arrays and NiMoZn heterojunction photocathodes. Appl. Catal. B-Environ. 2017, 217, 615–621.CrossRefGoogle Scholar
  42. [42]
    Huang, Z. P.; Wang, C. F.; Pan, L.; Tian, F.; Zhang, X. X.; Zhang, C. Enhanced photoelectrochemical hydrogen production using silicon nanowires@MoS3. Nano Energy 2013, 2, 1337–1346.CrossRefGoogle Scholar
  43. [43]
    Basu, M.; Zhang, Z. W.; Chen, C. J.; Chen, P. T.; Yang, K. C.; Ma, C. G.; Lin, C. C.; Hu, S. F.; Liu, R. S. Heterostructure of Si and CoSe2: A promising photocathode based on a non-noble metal catalyst for photoelectrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 6211–6216.CrossRefGoogle Scholar
  44. [44]
    Seger, B.; Pedersen, T.; Laursen, A. B.; Vesborg, P. C. K.; Hansen, O.; Chorkendorff, I. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J. Am. Chem. Soc. 2013, 135, 1057–1064.CrossRefGoogle Scholar
  45. [45]
    Seger, B.; Laursen, A. B.; Vesborg, P. C. K.; Pedersen, T.; Hansen, O.; Dahl, S.; Chorkendorff, I. Hydrogen production Nano Research using a molybdenum sulfide catalyst on a titanium-protected n plus p-silicon photocathode. Angew. Chem., Int. Ed. 2012, 51, 9128–9131.CrossRefGoogle Scholar
  46. [46]
    Bae, D.; Shayestehaminzadeh, S.; Thorsteinsson, E. B.; Pedersen, T.; Hansen, O.; Seger, B.; Vesborg, P. C. K.; Olafsson, S.; Chorkendorff, I. Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media. Sol. Energy Mater. Sol. Cell 2016, 144, 758–765.CrossRefGoogle Scholar
  47. [47]
    Bao, X. Q.; Liu, L. F. Improved photo-stability of silicon nanobelt arrays by atomic layer deposition for efficient photocatalytic hydrogen evolution. J. Power Sources 2014, 268, 677–682.CrossRefGoogle Scholar
  48. [48]
    Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.CrossRefGoogle Scholar
  49. [49]
    Callejas, J. F.; Read, C. G.; Popczun, E. J.; McEnaney, J. M.; Schaak, R. E. Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chem. Mater. 2015, 27, 3769–3774.CrossRefGoogle Scholar
  50. [50]
    Choi, S. K.; Chae, W. S.; Song, B.; Cho, C. H.; Choi, J.; Han, D. S.; Choi, W.; Park, H. Photoelectrochemical hydrogen production on silicon microwire arrays overlaid with ultrathin titanium nitride. J. Mater. Chem. A 2016, 4, 14008–14016.CrossRefGoogle Scholar
  51. [51]
    Zhang, C. T.; Pu, Z. H.; Amiinu, I. S.; Zhao, Y. F.; Zhu, J. W.; Tang, Y. F.; Mu, S. C. Co2P quantum dot embedded N,P dual-doped carbon self-supported electrodes with flexible and binder-free properties for efficient hydrogen evolution reactions. Nanoscale 2018, 10, 2902–2907.CrossRefGoogle Scholar
  52. [52]
    Doan-Nguyen, V. V. T.; Zhang, S.; Trigg, E. B.; Agarwal, R.; Li, J.; Su, D.; Winey, K. I.; Murray, C. B. Synthesis and X-ray characterization of cobalt phosphide (Co2P) nanorods for the oxygen reduction reaction. ACS Nano 2015, 9, 8108–8115.CrossRefGoogle Scholar
  53. [53]
    Blanchard, P. E. R.; Grosvenor, A. P.; Cavell, R. G.; Mar, A. X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M2P and M3P (M = Cr-Ni). Chem. Mater. 2008, 20, 7081–7088.CrossRefGoogle Scholar
  54. [54]
    Huang, Z. P.; Zhong, P.; Wang, C. F.; Zhang, X. X.; Zhang, C. Silicon nanowires/reduced graphene oxide composites for enhanced photoelectrochemical properties. ACS Appl. Mater. Interfaces 2013, 5, 1961–1966.CrossRefGoogle Scholar
  55. [55]
    Sim, U.; Moon, J.; An, J.; Kang, J. H.; Jerng, S. E.; Moon, J.; Cho, S. P.; Hong, B. H.; Nam, K. T. N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production. Energy Environ. Sci. 2015, 8, 1329–1338.CrossRefGoogle Scholar
  56. [56]
    Esposito, D. V.; Levin, I.; Moffat, T. P.; Talin, A. A. H2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nat. Mater. 2013, 12, 562–568.CrossRefGoogle Scholar
  57. [57]
    Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014, 344, 1005–1009.CrossRefGoogle Scholar
  58. [58]
    Erlebacher, J. An atomistic description of dealloying-porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc. 2004, 151, C614–C626.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sitaramanjaneva Mouli Thalluri
    • 1
  • Jerome Borme
    • 1
  • Kang Yu
    • 1
    • 2
  • Junyuan Xu
    • 1
  • Isilda Amorim
    • 1
  • Joao Gaspar
    • 1
  • Liang Qiao
    • 3
  • Paulo Ferreira
    • 1
    • 2
    • 4
  • Pedro Alpuim
    • 1
    • 5
  • Lifeng Liu
    • 1
  1. 1.International Iberian Nanotechnology Laboratory (INL)BragaPortugal
  2. 2.Materials Science and Engineering ProgramUniversity of Texas at AustinAustinUSA
  3. 3.Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical SciencesFudan UniversityShanghaiChina
  4. 4.Mechanical Engineering Department and IDMEC, Instituto Superior TécnicoUniversity of LisbonLisboaPortugal
  5. 5.Center of PhysicsUniversity of MinhoBragaPortugal

Personalised recommendations