Skip to main content
Log in

Molten-salt synthesis of porous La0.6Sr0.4Co0.2Fe0.8O2.9 perovskite as an efficient electrocatalyst for oxygen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of an efficient and low-cost electrocatalyst for the oxygen evolution reaction (OER) via an eco-efficient route is a desirable, although challenging, outcome for overall water splitting. Herein, an iron-rich La0.6Sr0.4Co0.2Fe0.8O2.9 (LSCF28) perovskite with an open porous topographic structure was developed as an electrocatalyst by a straightforward molten-salt synthesis approach. It was found that porosity correlates with both the iron content and the molten-salt approach. Benefiting from the large surface area, high activity of the porous internal surface, and the optimal electronic configuration of redox sites, this inexpensive material exhibits high performance with a large mass activity of 40.8 A·g–1 at a low overpotential of 0.345 V in 0.1 M KOH, surpassing the state-of-the-art precious metal IrO2 catalyst and other well-known perovskites, such as Ba0.5Sr0.5Co0.8Fe0.2O3 and SrCoO2.7. Our work illustrates that the molten-salt method is an effective route to generate porous structures in perovskite oxides, which is important for energy conversion and storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    Article  Google Scholar 

  2. Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502.

    Article  Google Scholar 

  3. Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.

    Article  Google Scholar 

  4. Koper, M. T. M. Hydrogen electrocatalysis: A basic solution. Nat. Chem. 2013, 5, 255–256.

    Article  Google Scholar 

  5. Gasteiger, H. A.; Markovic, N. M. Just a dream—or future reality? Science. 2009, 324, 48–49.

    Article  Google Scholar 

  6. Gorlin, Y.; Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 2010, 132, 13612–13614.

    Article  Google Scholar 

  7. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  8. Gong, M.; Wang, D.-Y.; Chen, C.-C.; Hwang, B.-J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.

    Article  Google Scholar 

  9. Chen, D. J.; Chen, C.; Baiyee, Z. M.; Shao, Z. P.; Ciucci, F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 2015, 115, 9869–9921.

    Article  Google Scholar 

  10. Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew.Chem. 2015, 127, 7507–7512.

    Article  Google Scholar 

  11. Nai, J. W.; Yin, H. J.; You, T. T.; Zheng, L. R.; Zhang, J.; Wang, P. X.; Jin, Z.; Tian, Y.; Liu, J. Z.; Tang, Z. Y. et al. Efficient electrocatalytic water oxidation by using amorphous Ni-Co double hydroxides nanocages. Adv. Energy Mater. 2015, 5, 1401880.

    Article  Google Scholar 

  12. Correa-Baena, J. P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744.

    Article  Google Scholar 

  13. Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B. J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 2017, 16, 925–931.

    Article  Google Scholar 

  14. Royer, S.; Duprez, D.; Can, F.; Courtois, X.; Batiot-Dupeyrat, C.; Laassiri, S.; Alamdari, H. Perovskites as substitutes of noble metals for heterogeneous catalysis: Dream or reality. Chem. Rev. 2014, 114, 10292–10368.

    Article  Google Scholar 

  15. Zhu, Y. L.; Zhou, W.; Yu, J.; Chen, Y. B.; Liu, M. L.; Shao, Z. P. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 2016, 28, 1691–1697.

    Article  Google Scholar 

  16. Yan, Z. H.; Sun, H. M.; Chen, X.; Fu, X. R.; Chen, C. C.; Cheng, F. Y.; Chen, J. Rapid low-temperature synthesis of perovskite/carbon nanocomposites as superior electrocatalysts for oxygen reduction in Zn-air batteries. Nano Res., in press, DOI: 10.1007/s12274-017-1869-8.

  17. Zhu, Y. L.; Zhou, W.; Shao, Z. P. Perovskite/carbon composites: Applications in oxygen electrocatalysis. Small. 2017, 13, 1603793.

    Article  Google Scholar 

  18. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

    Article  Google Scholar 

  19. Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 2011, 3, 546–550.

    Article  Google Scholar 

  20. Zhu, Y. L.; Zhou, W.; Zhong, Y. J.; Bu, Y. F.; Chen, X. Y.; Zhong, Q.; Liu, M. L.; Shao, Z. P. A perovskite nanorod as bifunctional electrocatalyst for overall water splitting. Adv. Energy Mater. 2017, 7, 1602122.

    Article  Google Scholar 

  21. Mefford, J. T.; Rong, X.; Abakumov, A. M.; Hardin, W. G.; Dai, S.; Kolpak, A. M.; Johnston, K. P.; Stevenson, K. J. Water electrolysis on La1–xSrxCoO3-δ perovskite electrocatalysts. Nat. Commun. 2016, 7, 11053.

    Article  Google Scholar 

  22. Zhou, S. M.; Miao, X. B.; Zhao, X.; Ma, C.; Qiu, Y. H.; Hu, Z. P.; Zhao, J. Y.; Shi, L.; Zeng, J. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. Nat. Commun. 2016, 7, 11510.

    Article  Google Scholar 

  23. Chen, G.; Zhou, W.; Guan, D. Q.; Sunarso, J.; Zhu, Y. P.; Hu, X. F.; Zhang, W.; Shao, Z. P. Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3–δ nanofilms with tunable oxidation state. Sci. Adv. 2017, 3, e1603206.

    Article  Google Scholar 

  24. Zhu, Y. L.; Zhou, W.; Sunarso, J.; Zhong, Y. J.; Shao, Z. P. Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution. Adv. Funct. Mater. 2016, 26, 5862–5872.

    Article  Google Scholar 

  25. Grimaud, A.; May, K. J.; Carlton, C. E.; Lee, Y.-L.; Risch, M.; Hong, W. T.; Zhou, J.; Shao-Horn, Y. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 2013, 4, 2439.

    Article  Google Scholar 

  26. Yagi, S.; Yamada, I.; Tsukasaki, H.; Seno, A.; Murakami, M.; Fujii, H.; Chen, H.; Umezawa, N.; Abe, H.; Nishiyama, N.; Mori, S. Covalency-reinforced oxygen evolution reaction catalyst. Nat. Commun. 2015, 6, 8249.

    Article  Google Scholar 

  27. Shao, Z. P.; Zhou, W.; Zhu, Z. H. Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Progress in Mater. Sci. 2012, 57, 804–874.

    Article  Google Scholar 

  28. Zhu, Y. L.; Zhou, W.; Chen, Z.-G.; Chen, Y. B.; Su, C.; Tadé, M. O.; Shao, Z. P. SrNb0.1Co0.7Fe0.2O3-δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. Angew. Chem., Int. Ed. 2015, 54, 3897–3901.

    Article  Google Scholar 

  29. Lee, J. J.; Oh, M. Y.; Nahm, K. S. Effect of ball milling on electrocatalytic activity of perovskite La0.6Sr0.4CoO3-δ applied for lithium air battery. J. Electrochem. Soc. 2016, 163, A244–A250.

    Article  Google Scholar 

  30. Hashimoto, S.-I.; Fukuda, Y.; Kuhn, M.; Sato, K.; Yashiro, K.; Mizusaki, J. Thermal and chemical lattice expansibility of La0.6Sr0.4Co1-yFeyO3-δ (y = 0.2, 0.4, 0.6 and 0.8). Solid State Ionics 2011, 186, 37–43.

    Article  Google Scholar 

  31. Heel, A.; Holtappels, P.; Hug, P.; Graule, T. Flame spray synthesis of nanoscale La0.6Sr0.4Co0.2Fe0.8O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ as cathode materials for intermediate temperature solid oxide fuel cells. Fuel Cells. 2010, 10, 419–432.

    Article  Google Scholar 

  32. Dieterle, L.; Bockstaller, P.; Gerthsen, D.; Hayd, J.; Ivers-Tiffée, E.; Guntow, U. Microstructure of nanoscaled La0.6Sr0.4CoO3-δ cathodes for intermediate-temperature solid oxide fuel cells. Adv. Energy Mater. 2011, 1, 249–258.

    Article  Google Scholar 

  33. Morán-Ruiz, A.; Vidal, K.; Larrañaga, A.; Arriortua, M. I. Chemical compatibility and electrical contact of LaNi0.6Co0.4O3-δ (LNC) between Crofer22APU interconnect and La0.6Sr0.4FeO3 (LSF) cathode for IT-SOFC. Fuel Cells 2013, 13, 398–403.

    Article  Google Scholar 

  34. Natile, M. M.; Poletto, F.; Galenda, A.; Glisenti, A.; Montini, T.; De Rogatis, L.; Fornasiero, P. La0.6Sr0.4Co1–yFeyO3-δ perovskites: Influence of the Co/Fe atomic ratio on properties and catalytic activity toward alcohol steam-reforming. Chem. Mater. 2008, 20, 2314–2327.

    Article  Google Scholar 

  35. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Section A 1976, 32, 751–767.

    Article  Google Scholar 

  36. Wang, Y. C.; Zhou, T.; Jiang, K.; Da, P. M.; Peng, Z.; Tang, J.; Kong, B.; Cai, W.-B.; Yang, Z. Q.; Zheng, G. F. Reduced mesoporous Co3O4 Nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.

    Article  Google Scholar 

  37. Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Characterization of the porous structure of SBA-15. Chem. Mater. 2000, 12, 1961–1968.

    Article  Google Scholar 

  38. Liu, X. F.; Antonietti, M. Moderating black powder chemistry for the synthesis of doped and highly porous graphene nanoplatelets and their use in electrocatalysis. Adv. Mater. 2013, 25, 6284–6290.

    Article  Google Scholar 

  39. Mao, Y. B.; Banerjee, S.; Wong, S. S. Large-scale synthesis of single-crystalline perovskite nanostructures. J. Am. Chem. Soc. 2003, 125, 15718–15719.

    Article  Google Scholar 

  40. Kang, J. S.; Lee, H. J.; Kim, G.; Kim, D. H.; Dabrowski, B.; Kolesnik, S.; Lee, H.; Kim, J. Y.; Min, B. I. Electronic structure of the cubic perovskite SrMn1-xFexO3 investigated by X-ray spectroscopies. Phys. Rev. B 2008, 78, 154434.

    Google Scholar 

  41. Lin, H. J.; Chin, Y. Y.; Hu, Z.; Shu, G. J.; Chou, F. C.; Ohta, H.; Yoshimura, K.; Hebert, S.; Maignan, A.; Tanaka, A. et al. Local orbital occupation and energy levels of Co in NaxCoO2: A soft X-ray absorption study. Phy. Rev. B 2010, 81, 115138.

    Article  Google Scholar 

  42. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; Garcia-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

    Article  Google Scholar 

  43. Hong, W. T.; Stoerzinger, K. A.; Lee, Y.-L.; Giordano, L.; Grimaud, A.; Johnson, A. M.; Hwang, J.; Crumlin, E. J.; Yang, W.; Shao-Horn, Y. Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides. Energy Environ. Sci. 2017, 10, 2190–2200.

    Article  Google Scholar 

  44. Luo, K.; Roberts, M. R.; Hao, R.; Guerrini, N.; Pickup, D. M.; Liu, Y. S.; Edström, K.; Guo, J.; Chadwick, A. V.; Duda, L. C. et al. Charge-compensation in 3D-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 2016, 8, 684–691.

    Article  Google Scholar 

  45. Zhang, H.; Liu, J. Y.; Zhao, G. Q.; Gao, Y. J.; Tyliszczak, T.; Glans, P. A.; Guo, J. H.; Ma, D.; Sun, X. H.; Zhong, J. Probing the interfacial interaction in layered-carbon-stabilized iron oxide nanostructures: A soft X-ray spectroscopic study. ACS Appl. Mater. Interfaces 2015, 7, 7863–7868.

    Article  Google Scholar 

  46. Zheng, X. L.; Zhang, B.; De Luna, P.; Liang, Y. F.; Comin, R.; Voznyy, O.; Han, L. L.; de Arquer, F. P. G.; Liu, M.; Dinh, C. T. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 2018, 10, 149–154.

    Article  Google Scholar 

  47. Wilson, S. A.; Kroll, T.; Decreau, R. A.; Hocking, R. K.; Lundberg, M.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. Iron L-edge X-ray absorption spectroscopy of oxy-picket fence porphyrin: Experimental insight into Fe–O2 bonding. J. Am. Chem. Soc. 2013, 135, 1124–1136.

    Article  Google Scholar 

  48. Mizokawa, T.; Wakisaka, Y.; Sudayama, T.; Iwai, C.; Miyoshi, K.; Takeuchi, J.; Wadati, H.; Hawthorn, D. G.; Regier, T. Z.; Sawatzky, G. A. Role of oxygen holes in LixCoO2 revealed by soft X-ray spectroscopy. Phy. Rev. Let. 2013, 111, 056404.

    Article  Google Scholar 

  49. Chen, J.-M.; Chin, Y.-Y.; Valldor, M.; Hu, Z. W.; Lee, J.-M.; Haw, S.-C.; Hiraoka, N.; Ishii, H.; Pao, C.-W.; Tsuei, K.-D. et al. A complete high-to-low spin state transition of trivalent cobalt ion in octahedral symmetry in SrCo0.5Ru0.5O3-δ. J. Am. Chem. Soc. 2014, 136, 1514–1519.

    Article  Google Scholar 

  50. Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. 2016, 128, 5363–5367.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Hong-Ji Lin and Chien-Te Chen’s help for the Soft X-ray absorption spectroscopy experiments in National Synchrotron Radiation Research Center (NSRRC). This work was partly supported by the National Natural Science Foundation of China (Nos. 11305250 and 11575280), the Joint Funds of the National Natural Science Foundation of China (No. U1232117), the Key Project of Science and Technology of Shanghai (No. 15DZ1200100), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Nos. 2014237 and 2015212).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuo Zhang or Jian-Qiang Wang.

Electronic supplementary material

12274_2018_2065_MOESM1_ESM.pdf

Molten-salt synthesis of porous La0.6Sr0.4Co0.2Fe0.8O2.9 perovskite as an efficient electrocatalyst for oxygen evolution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Zhou, J., Zhang, S. et al. Molten-salt synthesis of porous La0.6Sr0.4Co0.2Fe0.8O2.9 perovskite as an efficient electrocatalyst for oxygen evolution. Nano Res. 11, 4796–4805 (2018). https://doi.org/10.1007/s12274-018-2065-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2065-1

Keywords

Navigation