Advertisement

Nano Research

, Volume 11, Issue 9, pp 4796–4805 | Cite as

Molten-salt synthesis of porous La0.6Sr0.4Co0.2Fe0.8O2.9 perovskite as an efficient electrocatalyst for oxygen evolution

  • Sanzhao Song
  • Jing Zhou
  • Shuo Zhang
  • Linjuan Zhang
  • Jiong Li
  • Yu Wang
  • Ling Han
  • Youwen Long
  • Zhiwei Hu
  • Jian-Qiang Wang
Research Article
  • 160 Downloads

Abstract

The development of an efficient and low-cost electrocatalyst for the oxygen evolution reaction (OER) via an eco-efficient route is a desirable, although challenging, outcome for overall water splitting. Herein, an iron-rich La0.6Sr0.4Co0.2Fe0.8O2.9 (LSCF28) perovskite with an open porous topographic structure was developed as an electrocatalyst by a straightforward molten-salt synthesis approach. It was found that porosity correlates with both the iron content and the molten-salt approach. Benefiting from the large surface area, high activity of the porous internal surface, and the optimal electronic configuration of redox sites, this inexpensive material exhibits high performance with a large mass activity of 40.8 A·g–1 at a low overpotential of 0.345 V in 0.1 M KOH, surpassing the state-of-the-art precious metal IrO2 catalyst and other well-known perovskites, such as Ba0.5Sr0.5Co0.8Fe0.2O3 and SrCoO2.7. Our work illustrates that the molten-salt method is an effective route to generate porous structures in perovskite oxides, which is important for energy conversion and storage devices.

Keywords

iron-rich perovskite oxygen evolution reaction energy storage and conversion molten salt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Hong-Ji Lin and Chien-Te Chen’s help for the Soft X-ray absorption spectroscopy experiments in National Synchrotron Radiation Research Center (NSRRC). This work was partly supported by the National Natural Science Foundation of China (Nos. 11305250 and 11575280), the Joint Funds of the National Natural Science Foundation of China (No. U1232117), the Key Project of Science and Technology of Shanghai (No. 15DZ1200100), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Nos. 2014237 and 2015212).

Supplementary material

12274_2018_2065_MOESM1_ESM.pdf (2.4 mb)
Molten-salt synthesis of porous La0.6Sr0.4Co0.2Fe0.8O2.9 perovskite as an efficient electrocatalyst for oxygen evolution

References

  1. [1]
    Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.CrossRefGoogle Scholar
  2. [2]
    Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502.CrossRefGoogle Scholar
  3. [3]
    Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.CrossRefGoogle Scholar
  4. [4]
    Koper, M. T. M. Hydrogen electrocatalysis: A basic solution. Nat. Chem. 2013, 5, 255–256.CrossRefGoogle Scholar
  5. [5]
    Gasteiger, H. A.; Markovic, N. M. Just a dream—or future reality? Science. 2009, 324, 48–49.CrossRefGoogle Scholar
  6. [6]
    Gorlin, Y.; Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 2010, 132, 13612–13614.CrossRefGoogle Scholar
  7. [7]
    Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.CrossRefGoogle Scholar
  8. [8]
    Gong, M.; Wang, D.-Y.; Chen, C.-C.; Hwang, B.-J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.CrossRefGoogle Scholar
  9. [9]
    Chen, D. J.; Chen, C.; Baiyee, Z. M.; Shao, Z. P.; Ciucci, F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 2015, 115, 9869–9921.CrossRefGoogle Scholar
  10. [10]
    Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew.Chem. 2015, 127, 7507–7512.CrossRefGoogle Scholar
  11. [11]
    Nai, J. W.; Yin, H. J.; You, T. T.; Zheng, L. R.; Zhang, J.; Wang, P. X.; Jin, Z.; Tian, Y.; Liu, J. Z.; Tang, Z. Y. et al. Efficient electrocatalytic water oxidation by using amorphous Ni-Co double hydroxides nanocages. Adv. Energy Mater. 2015, 5, 1401880.CrossRefGoogle Scholar
  12. [12]
    Correa-Baena, J. P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744.CrossRefGoogle Scholar
  13. [13]
    Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B. J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 2017, 16, 925–931.CrossRefGoogle Scholar
  14. [14]
    Royer, S.; Duprez, D.; Can, F.; Courtois, X.; Batiot-Dupeyrat, C.; Laassiri, S.; Alamdari, H. Perovskites as substitutes of noble metals for heterogeneous catalysis: Dream or reality. Chem. Rev. 2014, 114, 10292–10368.CrossRefGoogle Scholar
  15. [15]
    Zhu, Y. L.; Zhou, W.; Yu, J.; Chen, Y. B.; Liu, M. L.; Shao, Z. P. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 2016, 28, 1691–1697.CrossRefGoogle Scholar
  16. [16]
    Yan, Z. H.; Sun, H. M.; Chen, X.; Fu, X. R.; Chen, C. C.; Cheng, F. Y.; Chen, J. Rapid low-temperature synthesis of perovskite/carbon nanocomposites as superior electrocatalysts for oxygen reduction in Zn-air batteries. Nano Res., in press, DOI: 10.1007/s12274-017-1869-8.Google Scholar
  17. [17]
    Zhu, Y. L.; Zhou, W.; Shao, Z. P. Perovskite/carbon composites: Applications in oxygen electrocatalysis. Small. 2017, 13, 1603793.CrossRefGoogle Scholar
  18. [18]
    Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.CrossRefGoogle Scholar
  19. [19]
    Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 2011, 3, 546–550.CrossRefGoogle Scholar
  20. [20]
    Zhu, Y. L.; Zhou, W.; Zhong, Y. J.; Bu, Y. F.; Chen, X. Y.; Zhong, Q.; Liu, M. L.; Shao, Z. P. A perovskite nanorod as bifunctional electrocatalyst for overall water splitting. Adv. Energy Mater. 2017, 7, 1602122.CrossRefGoogle Scholar
  21. [21]
    Mefford, J. T.; Rong, X.; Abakumov, A. M.; Hardin, W. G.; Dai, S.; Kolpak, A. M.; Johnston, K. P.; Stevenson, K. J. Water electrolysis on La1–xSrxCoO3-δ perovskite electrocatalysts. Nat. Commun. 2016, 7, 11053.CrossRefGoogle Scholar
  22. [22]
    Zhou, S. M.; Miao, X. B.; Zhao, X.; Ma, C.; Qiu, Y. H.; Hu, Z. P.; Zhao, J. Y.; Shi, L.; Zeng, J. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. Nat. Commun. 2016, 7, 11510.CrossRefGoogle Scholar
  23. [23]
    Chen, G.; Zhou, W.; Guan, D. Q.; Sunarso, J.; Zhu, Y. P.; Hu, X. F.; Zhang, W.; Shao, Z. P. Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3–δ nanofilms with tunable oxidation state. Sci. Adv. 2017, 3, e1603206.CrossRefGoogle Scholar
  24. [24]
    Zhu, Y. L.; Zhou, W.; Sunarso, J.; Zhong, Y. J.; Shao, Z. P. Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution. Adv. Funct. Mater. 2016, 26, 5862–5872.CrossRefGoogle Scholar
  25. [25]
    Grimaud, A.; May, K. J.; Carlton, C. E.; Lee, Y.-L.; Risch, M.; Hong, W. T.; Zhou, J.; Shao-Horn, Y. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 2013, 4, 2439.CrossRefGoogle Scholar
  26. [26]
    Yagi, S.; Yamada, I.; Tsukasaki, H.; Seno, A.; Murakami, M.; Fujii, H.; Chen, H.; Umezawa, N.; Abe, H.; Nishiyama, N.; Mori, S. Covalency-reinforced oxygen evolution reaction catalyst. Nat. Commun. 2015, 6, 8249.CrossRefGoogle Scholar
  27. [27]
    Shao, Z. P.; Zhou, W.; Zhu, Z. H. Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Progress in Mater. Sci. 2012, 57, 804–874.CrossRefGoogle Scholar
  28. [28]
    Zhu, Y. L.; Zhou, W.; Chen, Z.-G.; Chen, Y. B.; Su, C.; Tadé, M. O.; Shao, Z. P. SrNb0.1Co0.7Fe0.2O3-δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. Angew. Chem., Int. Ed. 2015, 54, 3897–3901.CrossRefGoogle Scholar
  29. [29]
    Lee, J. J.; Oh, M. Y.; Nahm, K. S. Effect of ball milling on electrocatalytic activity of perovskite La0.6Sr0.4CoO3-δ applied for lithium air battery. J. Electrochem. Soc. 2016, 163, A244–A250.CrossRefGoogle Scholar
  30. [30]
    Hashimoto, S.-I.; Fukuda, Y.; Kuhn, M.; Sato, K.; Yashiro, K.; Mizusaki, J. Thermal and chemical lattice expansibility of La0.6Sr0.4Co1-yFeyO3-δ (y = 0.2, 0.4, 0.6 and 0.8). Solid State Ionics 2011, 186, 37–43.CrossRefGoogle Scholar
  31. [31]
    Heel, A.; Holtappels, P.; Hug, P.; Graule, T. Flame spray synthesis of nanoscale La0.6Sr0.4Co0.2Fe0.8O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ as cathode materials for intermediate temperature solid oxide fuel cells. Fuel Cells. 2010, 10, 419–432.CrossRefGoogle Scholar
  32. [32]
    Dieterle, L.; Bockstaller, P.; Gerthsen, D.; Hayd, J.; Ivers-Tiffée, E.; Guntow, U. Microstructure of nanoscaled La0.6Sr0.4CoO3-δ cathodes for intermediate-temperature solid oxide fuel cells. Adv. Energy Mater. 2011, 1, 249–258.CrossRefGoogle Scholar
  33. [33]
    Morán-Ruiz, A.; Vidal, K.; Larrañaga, A.; Arriortua, M. I. Chemical compatibility and electrical contact of LaNi0.6Co0.4O3-δ (LNC) between Crofer22APU interconnect and La0.6Sr0.4FeO3 (LSF) cathode for IT-SOFC. Fuel Cells 2013, 13, 398–403.CrossRefGoogle Scholar
  34. [34]
    Natile, M. M.; Poletto, F.; Galenda, A.; Glisenti, A.; Montini, T.; De Rogatis, L.; Fornasiero, P. La0.6Sr0.4Co1–yFeyO3-δ perovskites: Influence of the Co/Fe atomic ratio on properties and catalytic activity toward alcohol steam-reforming. Chem. Mater. 2008, 20, 2314–2327.CrossRefGoogle Scholar
  35. [35]
    Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Section A 1976, 32, 751–767.CrossRefGoogle Scholar
  36. [36]
    Wang, Y. C.; Zhou, T.; Jiang, K.; Da, P. M.; Peng, Z.; Tang, J.; Kong, B.; Cai, W.-B.; Yang, Z. Q.; Zheng, G. F. Reduced mesoporous Co3O4 Nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.CrossRefGoogle Scholar
  37. [37]
    Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Characterization of the porous structure of SBA-15. Chem. Mater. 2000, 12, 1961–1968.CrossRefGoogle Scholar
  38. [38]
    Liu, X. F.; Antonietti, M. Moderating black powder chemistry for the synthesis of doped and highly porous graphene nanoplatelets and their use in electrocatalysis. Adv. Mater. 2013, 25, 6284–6290.CrossRefGoogle Scholar
  39. [39]
    Mao, Y. B.; Banerjee, S.; Wong, S. S. Large-scale synthesis of single-crystalline perovskite nanostructures. J. Am. Chem. Soc. 2003, 125, 15718–15719.CrossRefGoogle Scholar
  40. [40]
    Kang, J. S.; Lee, H. J.; Kim, G.; Kim, D. H.; Dabrowski, B.; Kolesnik, S.; Lee, H.; Kim, J. Y.; Min, B. I. Electronic structure of the cubic perovskite SrMn1-xFexO3 investigated by X-ray spectroscopies. Phys. Rev. B 2008, 78, 154434.Google Scholar
  41. [41]
    Lin, H. J.; Chin, Y. Y.; Hu, Z.; Shu, G. J.; Chou, F. C.; Ohta, H.; Yoshimura, K.; Hebert, S.; Maignan, A.; Tanaka, A. et al. Local orbital occupation and energy levels of Co in NaxCoO2: A soft X-ray absorption study. Phy. Rev. B 2010, 81, 115138.CrossRefGoogle Scholar
  42. [42]
    Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; Garcia-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.CrossRefGoogle Scholar
  43. [43]
    Hong, W. T.; Stoerzinger, K. A.; Lee, Y.-L.; Giordano, L.; Grimaud, A.; Johnson, A. M.; Hwang, J.; Crumlin, E. J.; Yang, W.; Shao-Horn, Y. Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides. Energy Environ. Sci. 2017, 10, 2190–2200.CrossRefGoogle Scholar
  44. [44]
    Luo, K.; Roberts, M. R.; Hao, R.; Guerrini, N.; Pickup, D. M.; Liu, Y. S.; Edström, K.; Guo, J.; Chadwick, A. V.; Duda, L. C. et al. Charge-compensation in 3D-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 2016, 8, 684–691.CrossRefGoogle Scholar
  45. [45]
    Zhang, H.; Liu, J. Y.; Zhao, G. Q.; Gao, Y. J.; Tyliszczak, T.; Glans, P. A.; Guo, J. H.; Ma, D.; Sun, X. H.; Zhong, J. Probing the interfacial interaction in layered-carbon-stabilized iron oxide nanostructures: A soft X-ray spectroscopic study. ACS Appl. Mater. Interfaces 2015, 7, 7863–7868.CrossRefGoogle Scholar
  46. [46]
    Zheng, X. L.; Zhang, B.; De Luna, P.; Liang, Y. F.; Comin, R.; Voznyy, O.; Han, L. L.; de Arquer, F. P. G.; Liu, M.; Dinh, C. T. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 2018, 10, 149–154.CrossRefGoogle Scholar
  47. [47]
    Wilson, S. A.; Kroll, T.; Decreau, R. A.; Hocking, R. K.; Lundberg, M.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. Iron L-edge X-ray absorption spectroscopy of oxy-picket fence porphyrin: Experimental insight into Fe–O2 bonding. J. Am. Chem. Soc. 2013, 135, 1124–1136.CrossRefGoogle Scholar
  48. [48]
    Mizokawa, T.; Wakisaka, Y.; Sudayama, T.; Iwai, C.; Miyoshi, K.; Takeuchi, J.; Wadati, H.; Hawthorn, D. G.; Regier, T. Z.; Sawatzky, G. A. Role of oxygen holes in LixCoO2 revealed by soft X-ray spectroscopy. Phy. Rev. Let. 2013, 111, 056404.CrossRefGoogle Scholar
  49. [49]
    Chen, J.-M.; Chin, Y.-Y.; Valldor, M.; Hu, Z. W.; Lee, J.-M.; Haw, S.-C.; Hiraoka, N.; Ishii, H.; Pao, C.-W.; Tsuei, K.-D. et al. A complete high-to-low spin state transition of trivalent cobalt ion in octahedral symmetry in SrCo0.5Ru0.5O3-δ. J. Am. Chem. Soc. 2014, 136, 1514–1519.CrossRefGoogle Scholar
  50. [50]
    Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. 2016, 128, 5363–5367.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sanzhao Song
    • 1
    • 2
  • Jing Zhou
    • 1
  • Shuo Zhang
    • 1
  • Linjuan Zhang
    • 1
  • Jiong Li
    • 1
  • Yu Wang
    • 1
  • Ling Han
    • 1
  • Youwen Long
    • 3
    • 4
  • Zhiwei Hu
    • 5
  • Jian-Qiang Wang
    • 1
    • 2
  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  4. 4.Collaborative Innovation Center of Quantum MatterBeijingChina
  5. 5.Max Planck Institute for Chemical Physics of SolidsDresdenGermany

Personalised recommendations