Advertisement

Nano Research

, Volume 11, Issue 9, pp 4759–4773 | Cite as

Tuning the properties of confined water in standard and hybrid nanotubes: An infrared spectroscopic study

  • Yuanyuan Liao
  • Pierre Picot
  • Maxime Lainé
  • Jean-Blaise Brubach
  • Pascale Roy
  • Antoine Thill
  • Sophie Le Caër
Research Article

Abstract

Imogolite is a natural nanotubular aluminum silicate clay mineral found in volcanic soils. Its well-defined, tunable structure makes it a good candidate for studying water confinement in a one-dimensional (1D)structure. Water confinement in self-sustaining imogolite thin films was studied using infrared spectroscopy. Two types of synthetic imogolites were investigated: pristine imogolite (IMO-OH) with a hydrophilic inner surface covered with Si–OH groups and hybrid imogolite (IMO-CH3) with a hydrophobic inner surface covered with Si–CH3 groups. Both imogolites have an outer surface that is covered with Al–OH groups. Infrared spectra were recorded in the 20–4,000 cm−1 spectral range as a function of relative humidity. Analysis of the O–H stretching band provides information on the H bonding of confined water molecules inside and outside the IMO-OH tubes. The scenario for water filling as a function of relative humidity is determined for both systems. Adsorption begins in the IMO-OH tubes at the lowest relative humidity (< 10%). The inner surface of the tubes is first covered with water molecules; then, the central part of the tubes is filled, leading to very strong H bonds and a structured spectrum. In contrast, the H bonds of water adsorbed on the outer surfaces of these tubes are weaker. A different scenario is observed for water inside IMO-CH3: Weakly H-bonded water molecules are present, similar to that observed incarbon nanotubes. Water confinement in imogolites is governed by the hydrophilicity of the inner walls. At similar partial pressures, the degree of H bonding depends on the interactions between water and the nanotube wall.

Keywords

imogolite nanotubes confinement infrared spectroscopy water isotherms hydrophilic hydrophobic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by a public grant from the “Laboratoire d’Excellence Physics Atom Light Matter” (LabEx PALM) (No. ANR-10-LABX-0039) and Labex NanoSaclay overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (No. ANR-10-LABX-0035). Synchrotron SOLEIL is acknowledged for providing beam time and technological support. Dr. Barbara Bonelli is acknowledged for fruitful discussions about IR spectra of IMO-CH3.

Supplementary material

12274_2018_2060_MOESM1_ESM.pdf (1.7 mb)
Tuning the properties of confined water in standard andhybrid nanotubes: An infrared spectroscopic study

References

  1. [1]
    Eisenberg, D.; Kauzmann, W. The Structure and Properties of Water; Oxford University Press: London, 1969.Google Scholar
  2. [2]
    Marañón Di Leo, J.; Marañón, J. Confined water in nanotube. J. Mol. Struct. 2003, 623, 159–166.CrossRefGoogle Scholar
  3. [3]
    Koga, K.; Gao, G. T.; Tanaka, H.; Zeng, X. C. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 2001, 412, 802–805.CrossRefGoogle Scholar
  4. [4]
    Le Caër, S.; Pin, S.; Esnouf, S.; Raffy, Q.; Renault, J. P.; Brubach, J. B.; Creff, G.; Roy, P. A trapped water network in nanoporous material: The role of interfaces. Phys. Chem. Chem. Phys. 2011, 13, 17658–17666.CrossRefGoogle Scholar
  5. [5]
    Lev, D. G.; Gubbins, K. E.; Radhakrishnan, R.; Sliwinska- Bartkowiak, M. Phase separation in confined systems. Rep. Prog. Phys. 1999, 62, 1573–1659.CrossRefGoogle Scholar
  6. [6]
    Foroutan, M.; Fatemi, S. M.; Esmaeilian, F. A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation. Eur. Phys. J. E 2017, 40, 19.CrossRefGoogle Scholar
  7. [7]
    Le Caër, S.; Lima, M.; Gosset, D.; Simeone, D.; Bergaya, F.; Pommeret, S.; Renault, J. P.; Righini, R. Dynamics of water confined in clay minerals. J. Phys. Chem. C 2012, 116, 12916–12925.CrossRefGoogle Scholar
  8. [8]
    Musat, R.; Renault, J. P.; Candelaresi, M.; Palmer, D. J.; Le Caër, S.; Righini, R.; Pommeret, S. Finite size effects on hydrogen bonds in confined water. Angew. Chem., Int. Ed. 2008, 47, 8033–8035.CrossRefGoogle Scholar
  9. [9]
    Kim, D.; Kim, D. W.; Lim, H.-K.; Jeon, J.; Kim, H.; Jung, H.-T.; Lee, H. Intercalation of gas molecules in graphene oxide interlayer: The role of water. J. Phys. Chem. C 2014, 118, 11142–11148.CrossRefGoogle Scholar
  10. [10]
    Huang, P.; Pham, T. A.; Galli, G.; Schwegler, E. Alumina (0001)/water interface: Structural properties and infrared spectra from first-principles molecular dynamics simulations. J. Phys. Chem. C 2014, 118, 8944–8951.CrossRefGoogle Scholar
  11. [11]
    Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R. R.; Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction. Nano Lett. 2010, 10, 4067–4073.CrossRefGoogle Scholar
  12. [12]
    Wen, L. P.; Jiang, L. Construction of biomimetic smart nanochannels for confined water. Nat. Sci. Rev. 2014, 1, 144–156.CrossRefGoogle Scholar
  13. [13]
    Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 2012, 335, 442–444.CrossRefGoogle Scholar
  14. [14]
    Wei, N.; Peng, X. S.; Xu, Z. P. Understanding water permeation in graphene oxide membranes. ACS Appl. Mater. Interfaces 2014, 6, 5877–5883.CrossRefGoogle Scholar
  15. [15]
    Martin, C. R.; Nishizawa, M.; Jirage, K.; Kang, M.; Lee, S. B. Controlling ion-transport selectivity in gold nanotubule membranes. Adv. Mater. 2001, 13, 1351–1362.CrossRefGoogle Scholar
  16. [16]
    Dalla Bernardina, S.; Paineau, E.; Brubach, J. B.; Judeinstein, P.; Rouzière, S.; Launois, P.; Roy, P. Water in carbon nanotubes: The peculiar hydrogen bond network revealed by infrared spectroscopy. J. Am. Chem. Soc. 2016, 138, 10437–10443.CrossRefGoogle Scholar
  17. [17]
    Byl, O.; Liu, J. C.; Wang, Y.; Yim, W. L.; Johnson, J. K.; Yates, J. T. Unusual hydrogen bonding in water-filled carbon nanotubes. J. Am. Chem. Soc. 2006, 128, 12090–12097.CrossRefGoogle Scholar
  18. [18]
    Werder, T.; Walther, J. H.; Jaffe, R. L.; Halicioglu, T.; Noca, F.; Koumoutsakos, P. Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes. Nano Lett. 2001, 1, 697–702.CrossRefGoogle Scholar
  19. [19]
    Martí, J.; Gordillo, M. C. Effects of confinement on the vibrational spectra of liquid water adsorbed in carbon nanotubes. Phys. Rev. B 2001, 63, 165430.CrossRefGoogle Scholar
  20. [20]
    Sadeghi, M.; Parsafar, G. A. Density-induced molecular arrangements of water inside carbon nanotubes. Phys. Chem. Chem. Phys. 2013, 15, 7379–7388.CrossRefGoogle Scholar
  21. [21]
    Hernández-Rojas, J.; Calvo, F.; Bretón, J.; Gomez Llorente, J. M. Confinement effects on water clusters inside carbon nanotubes. J. Phys. Chem. C 2012, 116, 17019–17028.CrossRefGoogle Scholar
  22. [22]
    Alexiadis, A.; Kassinos, S. Molecular simulation of water in carbon nanotubes. Chem. Rev. 2008, 108, 5014–5034.CrossRefGoogle Scholar
  23. [23]
    Shirono, K.; Daiguji, H. Molecular simulation of the phase behavior of water confined in silica nanopores. J. Phys. Chem. C 2007, 111, 7938–7946.CrossRefGoogle Scholar
  24. [24]
    Mukherjee, S.; Bartlow, V. M.; Nair, S. Phenomenology of the growth of single-walled aluminosilicate and aluminogermanate nanotubes of precise dimensions. Chem. Mater. 2005, 17, 4900–4909.CrossRefGoogle Scholar
  25. [25]
    Mukherjee, S.; Kim, K.; Nair, S. Short, highly ordered, single-walled mixed-oxide nanotubes assemble from amorphous nanoparticles. J. Am. Chem. Soc. 2007, 129, 6820–6826.CrossRefGoogle Scholar
  26. [26]
    Amara, M. S.; Paineau, E.; Rouzière, S.; Guiose, B.; Krapf, M.-E. M.; Taché, O.; Launois, P.; Thill, A. Hybrid, tunable-diameter, metal oxide nanotubes for trapping of organic molecules. Chem. Mater. 2015, 27, 1488–1494.CrossRefGoogle Scholar
  27. [27]
    Maillet, P.; Levard, C.; Spalla, O.; Masion, A.; Rose, J.; Thill, A. Growth kinetic of single and double-walled aluminogermanate imogolite-like nanotubes: An experimental and modeling approach. Phys. Chem. Chem. Phys. 2011, 13, 2682–2689.CrossRefGoogle Scholar
  28. [28]
    Yoshinaga, N.; Aomine, S. Imogolite in some ando soils. J. Soil Sci. Plant Nutr. 1962, 8, 22–29.CrossRefGoogle Scholar
  29. [29]
    Farmer, V. C.; Fraser, A. R.; Tait, J. M. Synthesis of imogolite: A tubular aluminium silicate polymer. J. Chem. Soc., Chem. Commun. 1977, 462–463.Google Scholar
  30. [30]
    Farmer, V. C., Adams, M. J., Fraser, A. R., Palmieri, F. Synthetic imogolite: Properties, synthesis, and possible applications. Clay Miner. 1983, 18, 459–472.CrossRefGoogle Scholar
  31. [31]
    Yucelen, G. I.; Choudhury, R. P.; Vyalikh, A.; Scheler, U.; Beckham, H. W.; Nair, S. Formation of single-walled aluminosilicate nanotubes from molecular precursors and curved nanoscale intermediates. J. Am. Chem. Soc. 2011, 133, 5397–5412.CrossRefGoogle Scholar
  32. [32]
    Wada, S.-I.; Wada, K. Effects of substitution of germanium for silicon in imogolite. Clays Clay Miner. 1982, 30, 123–128.CrossRefGoogle Scholar
  33. [33]
    Bottero, I.; Bonelli, B.; Ashbrook, S. E.; Wright, P. A.; Zhou, W. Z.; Tagliabue, M.; Armandi, M.; Garrone, E. Synthesis and characterization of hybrid organic/inorganic nanotubes of the imogolite type and their behaviour towards methane adsorption. Phys. Chem. Chem. Phys. 2011, 13, 744–750.CrossRefGoogle Scholar
  34. [34]
    Creton, B.; Bougeard, D.; Smirnov, K. S.; Guilment, J.; Poncelet, O. Molecular dynamics study of hydrated imogolite 2. Structure and dynamics of confined water. Phys. Chem. Chem. Phys. 2008, 10, 4879–4888.CrossRefGoogle Scholar
  35. [35]
    Lee, S. U.; Choi, Y. C.; Youm, S. G.; Sohn, D. Origin of the strain energy minimum in imogolite nanotubes. J. Phys. Chem. C 2011, 115, 5226–5231.CrossRefGoogle Scholar
  36. [36]
    Amara, M. S.; Rouzière, S.; Paineau, E.; Bacia-Verloop, M.; Thill, A.; Launois, P. Hexagonalization of aluminogermanate imogolite nanotubes organized into closed-packed bundles. J. Phys. Chem. C 2014, 118, 9299–9306.CrossRefGoogle Scholar
  37. [37]
    Ohashi, F.; Tomura, S.; Akaku, K.; Hayashi, S.; Wada, S. I. Characterization of synthetic imogolite nanotubes as gas storage. J. Mater. Sci. 2004, 39, 1799–1801.CrossRefGoogle Scholar
  38. [38]
    Picot, P.; Tache, O.; Malloggi, F.; Coradin, T.; Thill, A. Behaviour of hybrid inside/out janus nanotubes at an oil/water interface. A route to self-assembled nanofluidics? Faraday Discuss. 2016, 191, 391–406.CrossRefGoogle Scholar
  39. [39]
    Boyer, M.; Paineau, E.; Bacia-Verloop, M.; Thill, A. Aqueous dispersion state of amphiphilic hybrid aluminosilicate nanotubes. Appl. Clay Sci. 2014, 96, 45–49.CrossRefGoogle Scholar
  40. [40]
    Zang, J.; Konduri, S.; Nair, S.; Sholl, D. S. Self-diffusion of water and simple alcohols in single-walled aluminosilicate nanotubes. ACS Nano 2009, 3, 1548–1556.CrossRefGoogle Scholar
  41. [41]
    Pohl, P. I.; Faulon, J.-L.; Smith, D. M. Pore structure of imogolite computer models. Langmuir 1996, 12, 4463–4468.CrossRefGoogle Scholar
  42. [42]
    Konduri, S.; Tong, H. M.; Chempath, S.; Nair, S. Water in single-walled aluminosilicate nanotubes: Diffusion and adsorption properties. J. Phys. Chem. C 2008, 112, 15367–15374.CrossRefGoogle Scholar
  43. [43]
    Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.CrossRefGoogle Scholar
  44. [44]
    Liao, Y.-Y.; Picot, P.; Brubach, J.-B.; Roy, P.; Le Caër, S.; Thill, A. Self-supporting thin films of imogolite and imogolite-like nanotubes for infrared spectroscopy. Appl. Clay Sci., DOI: 10.1016/j.clay.2017.06.005.Google Scholar
  45. [45]
    Dalla Bernardina, S.; Alabarse, F.; Kalinko, A.; Roy, P.; Chapuis, M.; Vita, N.; Hienerwadel, R.; Berthomieu, C.; Judeinstein, P.; Zanotti, J. M. et al. New experimental set-ups for studying nanoconfined water on the ailes beamline at soleil. Vib. Spectrosc. 2014, 75, 154–161.CrossRefGoogle Scholar
  46. [46]
    Brubach, J.-B.; Mermet, A.; Filabozzi, A.; Gerschel, A.; Roy, P. Signatures of the hydrogen bonding in the infrared bands of water. J. Chem. Phys. 2005, 122, 184509.CrossRefGoogle Scholar
  47. [47]
    Horikawa, Y. Electrophoretic mobility of binary mixtures of imogolite and some other clay minerals in aqueous suspensions. Clay Sci. 1976, 5, 43–50.Google Scholar
  48. [48]
    Paineau, E.; Krapf, M.-E. M.; Amara, M.-S.; Matskova, N. V.; Dozov, I.; Rouzière, S.; Thill, A.; Launois, P.; Davidson, P. A liquid-crystalline hexagonal columnar phase in highly-dilute suspensions of imogolite nanotubes. Nat. Commun. 2016, 7, 10271.CrossRefGoogle Scholar
  49. [49]
    Thill, A. Characterisation of imogolite by microscopic and spectroscopic methods. In Developments in Clay Science. Amsterdam: Elsevier, 2016; pp 223–253.Google Scholar
  50. [50]
    Ackerman, W. C.; Smith, D. M.; Huling, J. C.; Kim, Y. W.; Bailey, J. K.; Brinker, C. J. Gas/vapor adsorption in imogolite: A microporous tubular aluminosilicate. Langmuir 1993, 9, 1051–1057.CrossRefGoogle Scholar
  51. [51]
    Bonelli, B.; Armandi, M.; Garrone, E. Surface properties of alumino-silicate single-walled nanotubes of the imogolite type. Phys. Chem. Chem. Phys. 2013, 15, 13381–13390.CrossRefGoogle Scholar
  52. [52]
    Zelsmann, H. R. Temperature dependence of the optical constants for liquid H2O and D2O in the far IRregion. J. Mol. Struct. 1995, 350, 95–114.CrossRefGoogle Scholar
  53. [53]
    Zanotti, J.-M.; Judeinstein, P.; Dalla-Bernardina, S.; Creff, G.; Brubach, J.-B.; Roy, P.; Bonetti, M.; Ollivier, J.; Sakellariou, D.; Bellissent-Funel, M.-C. Competing coexisting phases in 2D water. Sci. Rep. 2016, 6, 25938.CrossRefGoogle Scholar
  54. [54]
    Miura, N.; Yamada, H.; Moon, A. Intermolecular vibrational study in liquid water and ice by using far infrared spectroscopy with synchrotron radiation of MIRRORCLE 20. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2010, 77, 1048–1053.CrossRefGoogle Scholar
  55. [55]
    Venyaminov, S. Y.; Prendergast, F. G. Water (H2O and D2O) molar absorptivity in the 1000–4000 cm−1 range and quantitative infrared spectroscopy of aqueous solutions. Anal. Biochem. 1997, 248, 234–245.CrossRefGoogle Scholar
  56. [56]
    Boissière, C.; Brubach, J. B.; Mermet, A.; de Marzi, G.; Bourgaux, C.; Prouzet, E.; Roy, P. Water confined in lamellar structures of AOT surfactants: An infrared investigation. J. Phys. Chem. B 2002, 106, 1032–1035.CrossRefGoogle Scholar
  57. [57]
    Shirai, K.; Sugimoto, T.; Watanabe, K.; Haruta, M.; Kurata, H.; Matsumoto, Y. Effect of water adsorption on carrier trapping dynamics at the surface of anatase TiO2 nanoparticles. Nano Lett. 2016, 16, 1323–1327.CrossRefGoogle Scholar
  58. [58]
    Libowitzky, E.; Rossman George, R. An IRabsorption calibration for water in minerals. Am. Mineral. 1997, 82, 1111–1115.CrossRefGoogle Scholar
  59. [59]
    Rajniak, P.; Yang, R. T. A simple model and experiments for adsorption-desorption hysteresis: Water vapor on silica gel. AlChE J. 1993, 39, 774–786.CrossRefGoogle Scholar
  60. [60]
    Burgess, C. G. V.; Everett, D. H.; Nuttall, S. Adsorption hysteresis in porous materials. Pure Appl. Chem. 1989, 61, 1845–1852.CrossRefGoogle Scholar
  61. [61]
    Neimark, A. V. Percolation theory of capillary hysteresis phenomena and its application for characterization of porous solids. In Studies in Surface Science & Catalysis. Elsevier: Amsterdam, 1991; pp 67–74.Google Scholar
  62. [62]
    Nakamoto, K.; Margoshes, M.; Rundle, R. E. Stretching frequencies as a function of distances in hydrogen bonds. J. Am. Chem. Soc. 1955, 77, 6480–6486.CrossRefGoogle Scholar
  63. [63]
    Bergonzi, I.; Mercury, L.; Brubach, J.-B.; Roy, P. Gibbs free energy of liquid water derived from infrared measurements. Phys. Chem. Chem. Phys. 2014, 16, 24830–24840.CrossRefGoogle Scholar
  64. [64]
    Wernet, P.; Nordlund, D.; Bergmann, U.; Cavalleri, M.; Odelius, M.; Ogasawara, H.; Näslund, L. Å.; Hirsch, T. K.; Ojamäe, L.; Glatzel, P. et al. The structure of the first coordination shell in liquid water. Science 2004, 304, 995–999.CrossRefGoogle Scholar
  65. [65]
    Auer, B.; Kumar, R.; Schmidt, J. R.; Skinner, J. L. Hydrogen bonding and Raman, IR,and 2D-IR spectroscopy of dilute HOD in liquid D2O. Proc. Natl. Acad. Sci. USA 2007, 104, 14215–14220.CrossRefGoogle Scholar
  66. [66]
    Vaitheeswaran, S.; Rasaiah, J. C.; Hummer, G. Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes. J. Chem. Phys. 2004, 121, 7955–7965.CrossRefGoogle Scholar
  67. [67]
    Onori, G.; Santucci, A. IR investigations of water structure in aerosol OTreverse micellar aggregates. J. Phys. Chem. 1993, 97, 5430–5434.CrossRefGoogle Scholar
  68. [68]
    Dalla Bernardina, S.; Brubach, J.-B.; Berrod, Q.; Guillermo, A.; Judeinstein, P.; Roy, P.; Lyonnard, S. Mechanism of ionization, hydration, and intermolecular H-bonding in proton conducting nanostructured ionomers. J. Phys. Chem. C 2014, 118, 25468–25479.CrossRefGoogle Scholar
  69. [69]
    Bratos, S.; Leicknam, J. C.; Pommeret, S.; Gallot, G. Laser spectroscopic visualization of hydrogen bond motions in liquid water. J. Mol. Struct. 2004, 708, 197–203.CrossRefGoogle Scholar
  70. [70]
    Striolo, A.; Chialvo, A. A.; Gubbins, K. E.; Cummings, P. T. Water in carbon nanotubes: Adsorption isotherms and thermodynamic properties from molecular simulation. J. Chem. Phys. 2005, 122, 234712.CrossRefGoogle Scholar
  71. [71]
    Zhang, K.; Lively, R. P.; Dose, M. E.; Brown, A. J.; Zhang, C.; Chung, J.; Nair, S.; Koros, W. J.; Chance, R. R. Alcohol and water adsorption in zeolitic imidazolate frameworks. Chem. Commun. 2013, 49, 3245–3247.CrossRefGoogle Scholar
  72. [72]
    Brovchenko, I.; Geiger, A.; Oleinikova, A. Water in nanopores. I. Coexistence curves from Gibbs ensemble Monte Carlo simulations. J. Chem. Phys. 2004, 120, 1958–1972.Google Scholar
  73. [73]
    Zhou, Y. H.; Guo, W.; Jiang, L. Water wettability in nanoconfined environment. Sci. China Phys. Mech. Astron. 2014, 57, 836–843.CrossRefGoogle Scholar
  74. [74]
    Sharma, S.; Debenedetti, P. G. Evaporation rate of water in hydrophobic confinement. Proc. Natl. Acad. Sci. USA 2012, 109, 4365–4370.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuanyuan Liao
    • 1
  • Pierre Picot
    • 1
  • Maxime Lainé
    • 1
  • Jean-Blaise Brubach
    • 2
  • Pascale Roy
    • 2
  • Antoine Thill
    • 1
  • Sophie Le Caër
    • 1
  1. 1.LIONS, NIMBE, UMR 3685, CEA, CNRSUniversité Paris-SaclayGif-sur-Yvette CedexFrance
  2. 2.Synchrotron SOLEIL AILES Beamline, L’Orme des MerisierGif-sur-Yvette CedexFrance

Personalised recommendations