Advertisement

Nano Research

, Volume 11, Issue 9, pp 4722–4727 | Cite as

Growth of atomically thick transition metal sulfide filmson graphene/6H-SiC(0001) by molecular beam epitaxy

  • Haicheng Lin
  • Wantong Huang
  • Kun Zhao
  • Chaosheng Lian
  • Wenhui Duan
  • Xi Chen
  • Shuai-Hua Ji
Research Article
  • 124 Downloads

Abstract

We report the growth and characterization of atomically thick NbS2, TaS2, and FeS films on a 6H-SiC(0001) substrate terminated with monolayer or bilayer epitaxial graphene. The crystal and electronic structures are studied by scanning tunneling microscopy and reflection high-energy electron diffraction. The NbS2 monolayer is solely in the 2H structure, while the TaS2 monolayer contains both 1T and 2H structures. Charge-density waves are observed in all phases. For the FeS films, the tetragonal structure coexists with the hexagonal one and no superconductivity is observed.

Keywords

two-dimensional (2D) materials molecular beam epitaxy charge density wave NbS2 TaS2 FeS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51561145005, 11574175 and 11622433), and the Ministry of Science and Technology of China (No. 2016YFA0301002). All the crystal structures in this paper are produced by VESTA [29].

References

  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefGoogle Scholar
  2. [2]
    Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.CrossRefGoogle Scholar
  3. [3]
    Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.CrossRefGoogle Scholar
  4. [4]
    Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.CrossRefGoogle Scholar
  5. [5]
    Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.CrossRefGoogle Scholar
  6. [6]
    Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nature Rev. Mater. 2017, 2, 17033.CrossRefGoogle Scholar
  7. [7]
    Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.CrossRefGoogle Scholar
  8. [8]
    Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.CrossRefGoogle Scholar
  9. [9]
    Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489–1492.CrossRefGoogle Scholar
  10. [10]
    Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forrö, L.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 2016, 12, 139–143.CrossRefGoogle Scholar
  11. [11]
    Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.CrossRefGoogle Scholar
  12. [12]
    Tang, S. J.; Zhang, C. F.; Wong, D.; Pedramrazi, Z.; Tsai, H. Z.; Jia, C. J.; Moritz, B.; Claassen, M.; Ryu, H.; Kahn, S. et al. Quantum spin Hall state in monolayer 1T’-WTe2. Nat. Phys. 2017, 13, 683–687.CrossRefGoogle Scholar
  13. [13]
    Fei, Z. Y.; Palomaki, T.; Wu, S. F.; Zhao, W. J.; Cai, X. H.; Sun, B. S.; Nguyen, P.; Finney, J.; Xu, X. D.; Cobden, D. H. Edge conduction in monolayer WTe2. Nat. Phys. 2017, 13, 677–682.CrossRefGoogle Scholar
  14. [14]
    Shimada, T.; Ohuchi, F. S.; Koma, A. Polytypes and charge density waves of ultrathin TaS2 films grown by van der Waals epitaxy. Surf. Sci. 1993, 291, 57–66.CrossRefGoogle Scholar
  15. [15]
    Sanders, C. E.; Dendzik, M.; Ngankeu, A. S.; Eich, A.; Bruix, A.; Bianchi, M.; Miwa, J. A.; Hammer, B.; Khajetoorians, A. A.; Hofmann, P. Crystalline and electronic structure of single-layer TaS2. Phys. Rev. B 2016, 94, 081404(R).CrossRefGoogle Scholar
  16. [16]
    Zhao, K.; Lin, H. C.; Huang, W. T.; Hu, X. P.; Chen, X.; Xue, Q. K.; Ji, S. H. Molecular beam epitaxy growth of tetragonal FeS films on SrTiO3(001) substrates. Chin. Phys. Lett. 2017, 34, 087401.CrossRefGoogle Scholar
  17. [17]
    Chang, K.; Liu, J. W.; Lin, H. C.; Wang, N.; Zhao, K.; Zhang, A. M.; Jin, F.; Zhong, Y.; Hu, X. P.; Duan, W. H. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 2016, 353, 274–278.CrossRefGoogle Scholar
  18. [18]
    Ge, W. Y.; Kawahara, K.; Tsuji, M.; Ago, H. Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD. Nanoscale 2013, 5, 5773–5778.CrossRefGoogle Scholar
  19. [19]
    Wang, X. S.; Lin, J. H.; Zhu, Y. M.; Luo, C.; Suenaga, K.; Cai, C. Z.; Xie, L. M. Chemical vapor deposition of trigonal prismatic NbS2 monolayers and 3R-polytype few-layers. Nanoscale 2017, 9, 16607–16611.CrossRefGoogle Scholar
  20. [20]
    Naito, M.; Tanaka, S. Electrical transport properties in 2H-NbS2, -NbSe2, -TaS2 and-TaSe2. J. Phys. Soc. Jpn. 1982, 51, 219–227.CrossRefGoogle Scholar
  21. [21]
    Guillamón, I.; Suderow, H.; Vieira, S.; Cario, L.; Diener, P.; Rodière, P. Superconducting density of states and vortex cores of 2H-NbS2. Phys. Rev. Lett. 2008, 101, 166407.CrossRefGoogle Scholar
  22. [22]
    Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335.CrossRefGoogle Scholar
  23. [23]
    Agarwal, M. K.; Patel, J. V.; Patel, H. B. Growth and characterisation of TaS2 single crystals. Bull. Mater. Sci. 1979, 1, 107–112.CrossRefGoogle Scholar
  24. [24]
    Castro Neto, A. H. Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides. Phys. Rev. Lett. 2001, 86, 4382–4385.CrossRefGoogle Scholar
  25. [25]
    Burk, B.; Thomson, R. E.; Zettl, A.; Clarke, J. Charge-density- wave domains in 1T-TaS2 observed by satellite structure in scanning-tunneling-microscopy images. Phys. Rev. Lett. 1991, 66, 3040–3043.CrossRefGoogle Scholar
  26. [26]
    Lai, X. F.; Zhang, H.; Wang, Y. Q.; Wang, X.; Zhang, X.; Lin, J. H.; Huang, F. Q. Observation of superconductivity in tetragonal FeS. J. Am. Chem. Soc. 2015, 137, 10148–10151.CrossRefGoogle Scholar
  27. [27]
    Zhang, K. F.; Zhang, X. L.; Yang, F.; Song, Y. R.; Chen, X. F.; Liu, C. H.; Qian, D.; Luo, W. D.; Gao, C. L.; Jia, J. F. Vectorial mapping of noncollinear antiferromagnetic structure of semiconducting FeSe surface with spin-polarized scanning tunneling microscopy. Appl. Phys. Lett. 2016, 108, 061601.CrossRefGoogle Scholar
  28. [28]
    Song, C. L.; Wang, Y. L.; Jiang, Y. P.; Li, Z.; Wang, L. L.; He, K.; Chen, X.; Ma, X. C.; Xue, Q. K. Molecular-beam epitaxy and robust superconductivity of stoichiometric FeSe crystalline films on bilayer graphene. Phys. Rev. B 2011, 84, 020503(R).CrossRefGoogle Scholar
  29. [29]
    Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Haicheng Lin
    • 1
  • Wantong Huang
    • 1
  • Kun Zhao
    • 1
  • Chaosheng Lian
    • 1
  • Wenhui Duan
    • 1
    • 2
  • Xi Chen
    • 1
    • 2
  • Shuai-Hua Ji
    • 1
    • 2
  1. 1.State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijingChina
  2. 2.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations