Nano Research

, Volume 11, Issue 9, pp 4643–4653 | Cite as

Influence of metal support in-plane symmetry on the corrugation of hexagonal boron nitride and graphene monolayers

  • Antonio J. Martínez-Galera
  • José M. Gómez-Rodríguez
Research Article


Predicting the properties of two-dimensional (2D) materials as graphene and hexagonal boron nitride (h-BN) monolayers after their growth on any given substrate is a major challenge. While the influence of the electron configuration of the atoms of the underlying surface is well-understood, the effect of substrate geometry still remains unclear. The structural properties of h-BN monolayers grown on a rectangularly packed Rh(110) surface were characterized in situ by ultrahigh vacuum scanning tunneling microscopy and were compared to those that this material exhibits when grown on substrates showing different crystallographic orientations. Although the h-BN monolayer grown on Rh(110) was dominated by a unique quasiunidimensional moiré pattern, suggesting considerable interface interaction, the moiré corrugation was unexpectedly smaller than those reported for strongly interacting interfaces with hexagonal-terminated substrates, owing to differences in the possible binding landscapes at interfaces with differently oriented substrates. Moreover, a rule was derived for predicting how interface corrugation and the existence and extent of subregions within moiré supercells containing favorable sites for orbital mixing between h-BN monolayers and their supports depend on substrate symmetry. These general symmetry considerations can be applied to numerous 2D materials, including graphene, thereby enabling the prediction of how substrate choice determines the properties of these materials. Furthermore, they could also provide new routes for tuning 2D material properties and for developing nanotemplates showing different geometries for growing adsorbate superlattices.


hexagonal boron nitride graphene 2-dimensional materials scanning tunneling microscopy moiré superstructures nanotemplates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors acknowledge financial support from AEI and FEDER under project MAT2016-77852-C2-2-R (AEI/FEDER, UE). A.J.M.-G. acknowledges funding from the Spanish MINECO through the Juan de la Cierva program (ref. IJCI-2014-19209).

Supplementary material

12274_2018_2045_MOESM1_ESM.pdf (1.9 mb)
Influence of metal support in-plane symmetry on the corrugation of hexagonal boron nitride and graphene monolayers


  1. [1]
    Oshima, C.; Nagashima, A. Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys.: Condes. Matter 1997, 9, 1.Google Scholar
  2. [2]
    Laskowski, R.; Blaha, P.; Schwarz, K. Bonding of hexagonal BN to transition metal surfaces: An ab initio density-functional theory study. Phys. Rev. B 2008, 78, 045409.CrossRefGoogle Scholar
  3. [3]
    Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; van den Brink, J.; Kelly, P. J. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 2009, 79, 195425.CrossRefGoogle Scholar
  4. [4]
    Wintterlin, J.; Bocquet, M. L. Graphene on metal surfaces. Surf. Sci. 2009, 603, 1841–1852.CrossRefGoogle Scholar
  5. [5]
    Batzill, M. The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 2012, 67, 83–115.CrossRefGoogle Scholar
  6. [6]
    Marchini, S.; Günther, S.; Wintterlin, J. Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 2007, 76, 075429.CrossRefGoogle Scholar
  7. [7]
    de Parga, A. L. V.; Calleja, F.; Borca, B.; Passeggi, M. C. G.; Hinarejos, J. J.; Guinea, F.; Miranda, R. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett. 2008, 100, 056807.CrossRefGoogle Scholar
  8. [8]
    Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565–570.CrossRefGoogle Scholar
  9. [9]
    Grüneis, A.; Vyalikh, D. V. Tunable hybridization between electronic states of graphene and a metal surface. Phys. Rev. B 2008, 77, 193401.CrossRefGoogle Scholar
  10. [10]
    Pletikosic, I.; Kralj, M.; Pervan, P.; Brako, R.; Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T. Dirac cones and minigaps for graphene on Ir(111). Phys. Rev. Lett. 2009, 102, 056808.CrossRefGoogle Scholar
  11. [11]
    Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt(111): Growth and substrate interaction. Phys. Rev. B 2009, 80, 245411.CrossRefGoogle Scholar
  12. [12]
    Voloshina, E. N.; Dedkov, Y. S.; Torbrügge, S.; Thissen, A.; Fonin, M. Graphene on Rh(111): Scanning tunneling and atomic force microscopies studies. Appl. Phys. Lett. 2012, 100, 241606.CrossRefGoogle Scholar
  13. [13]
    Rusponi, S.; Papagno, M.; Moras, P.; Vlaic, S.; Etzkorn, M.; Sheverdyaeva, P. M.; Pacile, D.; Brune, H.; Carbone, C. Highly anisotropic Dirac cones in epitaxial graphene modulated by an island superlattice. Phys. Rev. Lett. 2010, 105, 246803.CrossRefGoogle Scholar
  14. [14]
    Martín-Recio, A.; Romero-Muñiz, C.; Martínez Galera, A. J.; Pou, P.; Pérez, R.; Gómez-Rodríguez, J. M. Tug-of-war between corrugation and binding energy: Revealing the formation of multiple moiré patterns on a strongly interacting graphene-metal system. Nanoscale 2015, 7, 11300–11309.CrossRefGoogle Scholar
  15. [15]
    González-Herrero, H.; Pou, P.; Lobo-Checa, J.; Fernández-Torre, D.; Craes, F.; Martínez-Galera, A. J.; Ugeda, M. M.; Corso, M.; Enrique Ortega, J.; Gómez-Rodríguez, J. M. et al. Graphene tunable transparency to tunneling electrons: A direct tool to measure the local coupling. ACS Nano 2016, 10, 5131–5144.CrossRefGoogle Scholar
  16. [16]
    Nagashima, A.; Tejima, N.; Gamou, Y.; Kawai, T.; Oshima, C. Electronic-structure of monolayer hexagonal boron-nitride physisorbed on metal surfaces. Phys. Rev. Lett. 1995, 75, 3918–3921.CrossRefGoogle Scholar
  17. [17]
    Corso, M.; Auwärter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science 2004, 303, 217–220.CrossRefGoogle Scholar
  18. [18]
    Preobrajenski, A. B.; Vinogradov, A. S.; Mårtensson, N. Monolayer of h-BN chemisorbed on Cu(111) and Ni(111): The role of the transition metal 3d states. Surf. Sci. 2005, 582, 21–30.CrossRefGoogle Scholar
  19. [19]
    Preobrajenski, A. B.; Vinogradov, A. S.; Ng, M. L.; Cavar, E.; Westerström, R.; Mikkelsen, A.; Lundgren, E.; Mårtensson, N. Influence of chemical interaction at the lattice-mismatched h-BN/Rh(111) and h-BN/Pt(111) interfaces on the overlayer morphology. Phys. Rev. B 2007, 75, 245412.CrossRefGoogle Scholar
  20. [20]
    Preobrajenski, A. B.; Nesterov, M. A.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Monolayer h-BN on lattice-mismatched metal surfaces: On the formation of the nanomesh. Chem. Phys. Lett. 2007, 446, 119–123.CrossRefGoogle Scholar
  21. [21]
    Brugger, T.; Günther, S.; Wang, B.; Dil, J. H.; Bocquet, M. L.; Osterwalder, J.; Wintterlin, J.; Greber, T. Comparison of electronic structure and template function of single-layer graphene and a hexagonal boron nitride nanomesh on Ru(0001). Phys. Rev. B 2009, 79, 045407.CrossRefGoogle Scholar
  22. [22]
    Doll, G. L.; Speck, J. S.; Dresselhaus, G.; Dresselhaus, M. S.; Nakamura, K.; Tanuma, S. I. Intercalation of hexagonal boron nitride with potassium. J. Appl. Phys. 1989, 66, 2554–2558.CrossRefGoogle Scholar
  23. [23]
    Usachov, D.; Adamchuk, V. K.; Haberer, D.; Grüneis, A.; Sachdev, H.; Preobrajenski, A. B.; Laubschat, C.; Vyalikh, D. V. Quasifreestanding single-layer hexagonal boron nitride as a substrate for graphene synthesis. Phys. Rev. B 2010, 82, 075415.CrossRefGoogle Scholar
  24. [24]
    Brugger, T.; Ma, H. F.; Iannuzzi, M.; Berner, S.; Winkler, A.; Hutter, J.; Osterwalder, J.; Greber, T. Nanotexture switching of single-layer hexagonal boron nitride on rhodium by intercalation of hydrogen atoms. Angew. Chem., Int. Ed. 2010, 49, 6120–6124.CrossRefGoogle Scholar
  25. [25]
    Larciprete, R.; Ulstrup, S.; Lacovig, P.; Dalmiglio, M.; Bianchi, M.; Mazzola, F.; Hornekaer, L.; Orlando, F.; Baraldi, A.; Hofmann, P. et al. Oxygen switching of the epitaxial graphene- metal interaction. ACS Nano 2012, 6, 9551–9558.CrossRefGoogle Scholar
  26. [26]
    Mao, J. H.; Huang, L.; Pan, Y.; Gao, M.; He, J. F.; Zhou, H. T.; Guo, H. M.; Tian, Y.; Zou, Q.; Zhang, L. Z. et al. Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001). Appl. Phys. Lett. 2012, 100, 093101.CrossRefGoogle Scholar
  27. [27]
    Petrovic, M.; Rakic, I. Š.; Runte, S.; Busse, C.; Sadowski, J. T.; Lazic, P.; Pletikosic, I.; Pan, Z. H.; Milun, M.; Pervan, P. et al. The mechanism of caesium intercalation of graphene. Nat. Commun. 2013, 4, 2772.CrossRefGoogle Scholar
  28. [28]
    Ng, M. L.; Shavorskiy, A.; Rameshan, C.; Mikkelsen, A.; Lundgren, E.; Preobrajenski, A.; Bluhm, H. Reversible modification of the structural and electronic properties of a boron nitride monolayer by Co intercalation. ChemPhysChem 2015, 16, 923–927.CrossRefGoogle Scholar
  29. [29]
    Schröder, U. A.; Grånäs, E.; Gerber, T.; Arman, M. A.; Martínez-Galera, A. J.; Schulte, K.; Andersen, J. N.; Knudsen, J.; Michely, T. Etching of graphene on Ir(111) with molecular oxygen. Carbon 2016, 96, 320–331.CrossRefGoogle Scholar
  30. [30]
    Martínez-Galera, A. J.; Schröder, U. A.; Huttmann, F.; Jolie, W.; Craes, F.; Busse, C.; Caciuc, V.; Atodiresei, N.; Blügel, S.; Michely, T. Oxygen orders differently under graphene: New superstructures on Ir(111). Nanoscale 2016, 8, 1932–1943.CrossRefGoogle Scholar
  31. [31]
    Wan, J. Y.; Lacey, S. D.; Dai, J. Q.; Bao, W. Z.; Fuhrer, M. S.; Hu, L. B. Tuning two-dimensional nanomaterials by intercalation: Materials, properties and applications. Chem. Soc. Rev. 2016, 45, 6742–6765.CrossRefGoogle Scholar
  32. [32]
    Schröder, U. A.; Petrovic, M.; Gerber, T.; Martínez-Galera, A. J.; Grånäs, E.; Arman, M. A.; Herbig, C.; Schnadt, J.; Kralj, M.; Knudsen, J. et al. Core level shifts of intercalated graphene. 2D Mater. 2017, 4, 015013.CrossRefGoogle Scholar
  33. [33]
    Laskowski, R.; Blaha, P.; Gallauner, T.; Schwarz, K. Single-layer model of the hexagonal boron nitride nanomesh on the Rh(111) Surface. Phys. Rev. Lett. 2007, 98, 106802.CrossRefGoogle Scholar
  34. [34]
    Preobrajenski, A. B.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Controlling graphene corrugation on lattice-mismatched substrates. Phys. Rev. B 2008, 78, 073401.CrossRefGoogle Scholar
  35. [35]
    Gotterbarm, K.; Zhao, W.; Höfert, O.; Gleichweit, C.; Papp, C.; Steinrück, H. P. Growth and oxidation of graphene on Rh(111). Phys. Chem. Chem. Phys. 2013, 15, 19625–19631.CrossRefGoogle Scholar
  36. [36]
    Orlando, F.; Larciprete, R.; Lacovig, P.; Boscarato, I.; Baraldi, A.; Lizzit, S. Epitaxial growth of hexagonal boron nitride on Ir(111). J. Phys. Chem. C 2012, 116, 157–164.CrossRefGoogle Scholar
  37. [37]
    N’Diaye, A. T.; Bleikamp, S.; Feibelman, P. J.; Michely, T. Two-dimensional Ir cluster lattice on a graphene moiré on Ir(111). Phys. Rev. Lett. 2006, 97, 215501.CrossRefGoogle Scholar
  38. [38]
    Brihuega, I.; Michaelis, C. H.; Zhang, J.; Bose, S.; Sessi, V.; Honolka, J.; Schneider, M. A.; Enders, A.; Kern, K. Electronic decoupling and templating of Co nanocluster arrays on the boron nitride nanomesh. Surf. Sci. 2008, 602, L95–L99.CrossRefGoogle Scholar
  39. [39]
    N’Diaye, A. T.; Gerber, T.; Busse, C.; Myslivecek, J.; Coraux, J.; Michely, T. A versatile fabrication method for cluster superlattices. New J. Phys. 2009, 11, 103045.CrossRefGoogle Scholar
  40. [40]
    Donner, K.; Jakob, P. Structural properties and site specific interactions of Pt with the graphene/Ru(0001) moiré overlayer. J. Chem. Phys. 2009, 131, 164701.CrossRefGoogle Scholar
  41. [41]
    Cavallin, A.; Pozzo, M.; Africh, C.; Baraldi, A.; Vesselli, E.; Dri, C.; Comelli, G.; Larciprete, R.; Lacovig, P.; Lizzit, S. et al. Local electronic structure and density of edge and facet atoms at Rh nanoclusters self-assembled on a graphene template. ACS Nano 2012, 6, 3034–3043.CrossRefGoogle Scholar
  42. [42]
    Martínez-Galera, A. J.; Brihuega, I.; Gutiérrez-Rubio, A.; Stauber, T.; Gómez-Rodríguez, J. M. Towards scalable nano- engineering of graphene. Sci. Rep. 2014, 4, 7314.CrossRefGoogle Scholar
  43. [43]
    Martínez-Galera, A. J.; Brihuega, I.; Gómez-Rodríguez, J. M. Influence of the rotational domain in the growth of transition metal clusters on graphene. J. Phys. Chem. C 2015, 119, 3572–3578.CrossRefGoogle Scholar
  44. [44]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  45. [45]
    Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409.CrossRefGoogle Scholar
  46. [46]
    Hui, F.; Pan, C. B.; Shi, Y. Y.; Ji, Y. F.; Grustan-Gutierrez, E.; Lanza, M. On the use of two dimensional hexagonal boron nitride as dielectric. Microelectron. Eng. 2016, 163, 119–133.CrossRefGoogle Scholar
  47. [47]
    Ji, Y. F.; Pan, C. B.; Zhang, M. Y.; Long, S. B.; Lian, X. J.; Miao, F.; Hui, F.; Shi, Y. Y.; Larcher, L.; Wu, E. et al. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown. Appl. Phys. Lett. 2016, 108, 012905.CrossRefGoogle Scholar
  48. [48]
    Jiang, L. L.; Shi, Y. Y.; Hui, F.; Tang, K. C.; Wu, Q.; Pan, C. B.; Jing, X.; Uppal, H.; Palumbo, F.; Lu, G. Y. et al. Dielectric breakdown in chemical vapor deposited hexagonal boron nitride. ACS Appl. Mater. Interfaces 2017, 9, 39758–39770.CrossRefGoogle Scholar
  49. [49]
    Custance, O.; Brochard, S.; Brihuega, I.; Artacho, E.; Soler, J. M.; Baró, A. M.; Gómez-Rodríguez, J. M. Single adatom adsorption and diffusion on Si(111)-(7×7) surfaces: Scanning tunneling microscopy and first-principles calculations. Phys. Rev. B 2003, 67, 235410.CrossRefGoogle Scholar
  50. [50]
    Martínez-Galera, A. J.; Gómez-Rodríguez, J. M. Nucleation and growth of the prototype azabenzene 1,3,5-triazine on graphite surfaces at low temperatures. J. Phys. Chem. C 2011, 115, 11089–11094.CrossRefGoogle Scholar
  51. [51]
    Horcas, I.; Fernández, R.; Gómez-Rodriguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.CrossRefGoogle Scholar
  52. [52]
    Murray, P. W.; Leibsle, F. M.; Li, Y.; Guo, Q.; Bowker, M.; Thornton, G.; Dhanak, V. R.; Prince, K. C.; Rosei, R. Scanning- tunneling-microscopy study of the oxygen-induced reconstruction of Rh(110). Phys. Rev. B 1993, 47, 12976–12979.CrossRefGoogle Scholar
  53. [53]
    Murray, P. W.; Leibsle, F. M.; Thornton, G.; Bowker, M.; Dhanak, V. R.; Baraldi, A.; Kiskinova, M.; Rosei, R. Nitrogen-induced reconstruction on Rh(110): Effect of oxygen on the growth and ordering of Rh-N chains. Surf. Sci. 1994, 304, 48–58.CrossRefGoogle Scholar
  54. [54]
    Africh, C.; Esch, F.; Comelli, G.; Rosei, R. Dynamics of the O induced reconstruction of the Rh(110) surface: A scanning tunnelling microscopy study. J. Chem. Phys. 2001, 115, 477–481.CrossRefGoogle Scholar
  55. [55]
    Günther, S.; Hoyer, R.; Marbach, H.; Imbihl, R.; Esch, F.; Africh, C.; Comelli, G.; Kiskinova, M. K and mixed K+O adlayers on Rh(110). J. Chem. Phys. 2006, 124, 014706.CrossRefGoogle Scholar
  56. [56]
    Nguyen, L.; Liu, L. C.; Assefa, S.; Wolverton, C.; Schneider, W. F.; Tao, F. F. Atomic-scale structural evolution of Rh(110) during catalysis. ACS Catal. 2017, 7, 664–674.CrossRefGoogle Scholar
  57. [57]
    Li, Q. C.; Zou, X. L.; Liu, M. X.; Sun, J. Y.; Gao, Y. B.; Qi, Y.; Zhou, X. B.; Yakobson, B. I.; Zhang, Y. F.; Liu, Z. F. Grain boundary structures and electronic properties of hexagonal boron nitride on Cu(111). Nano Lett. 2015, 15, 5804–5810.CrossRefGoogle Scholar
  58. [58]
    N’Diaye, A. T.; Coraux, J.; Plasa, T. N.; Busse, C.; Michely, T. Structure of epitaxial graphene on Ir(111). New J. Phys. 2008, 10, 043033.CrossRefGoogle Scholar
  59. [59]
    Chagas, T.; Cunha, T. H. R.; Matos, M. J. S.; dos Reis, D. D.; Araujo, K. A. S.; Malachias, A.; Mazzoni, M. S. C.; Ferlauto, A. S.; Magalhaes-Paniago, R. Room temperature observation of the correlation between atomic and electronic structure of graphene on Cu(110). RSC Adv. 2016, 6, 98001–98009.CrossRefGoogle Scholar
  60. [60]
    Corso, M.; Greber, T.; Osterwalder, J. h-BN on Pd(110): A tunable system for self-assembled nanostructures? Surf. Sci. 2005, 577, L78–L84.Google Scholar
  61. [61]
    Vinogradov, N. A.; Zakharov, A. A.; Ng, M. L.; Mikkelsen, A.; Lundgren, E.; Martensson, N.; Preobrajenski, A. B. One-dimensional corrugation of the h-BN monolayer on Fe(110). Langmuir 2012, 28, 1775–1781.CrossRefGoogle Scholar
  62. [62]
    Allan, M. P.; Berner, S.; Corso, M.; Greber, T.; Osterwalder, J. Tunable self-assembly of one-dimensional nanostructures with orthogonal directions. Nanoscale Res. Lett. 2007, 2, 94–99.CrossRefGoogle Scholar
  63. [63]
    Müller, F.; Hüfner, S.; Sachdev, H. One-dimensional structure of boron nitride on chromium (110)-a study of the growth of boron nitride by chemical vapour deposition of borazine. Surf. Sci. 2008, 602, 3467–3476.CrossRefGoogle Scholar
  64. [64]
    Vinogradov, N. A.; Zakharov, A. A.; Kocevski, V.; Rusz, J.; Simonov, K. A.; Eriksson, O.; Mikkelsen, A.; Lundgren, E.; Vinogradov, A. S.; Mårtensson, N. et al. Formation and structure of graphene waves on Fe(110). Phys. Rev. Lett. 2012, 109, 026101.CrossRefGoogle Scholar
  65. [65]
    Müller, F.; Grandthyll, S. Monolayer formation of hexagonal boron nitride on Ag(001). Surf. Sci. 2013, 617, 207–210.CrossRefGoogle Scholar
  66. [66]
    Grandthyll, S.; Jacobs, K.; Müller, F. Liquid-source growth of graphene on Ag(001). Phys. Status Solidi B-Basic Solid State Phys. 2015, 252, 1695–1699.CrossRefGoogle Scholar
  67. [67]
    Rasool, H. I.; Song, E. B.; Mecklenburg, M.; Regan, B. C.; Wang, K. L.; Weiller, B. H.; Gimzewski, J. K. Atomic-scale characterization of graphene grown on copper (100) single crystals. J. Am. Chem. Soc. 2011, 133, 12536–12543.CrossRefGoogle Scholar
  68. [68]
    Locatelli, A.; Wang, C.; Africh, C.; Stojic, N.; Mentes, T. O.; Comelli, G.; Binggeli, N. Temperature-driven reversible rippling and bonding of a graphene superlattice. ACS Nano 2013, 7, 6955–6963.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Antonio J. Martínez-Galera
    • 1
  • José M. Gómez-Rodríguez
    • 1
    • 2
    • 3
  1. 1.Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadridSpain
  2. 2.Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridSpain
  3. 3.Instituto Nicolás CabreraUniversidad Autónoma de MadridMadridSpain

Personalised recommendations