Nano Research

, Volume 11, Issue 9, pp 4441–4467 | Cite as

Recent advances in controlled modification of the size and morphology of metal-organic frameworks

  • Botao Liu
  • Kowsalya Vellingiri
  • Sang-Hee Jo
  • Pawan Kumar
  • Yong Sik Ok
  • Ki-Hyun Kim
Review Article


Advances in metal-organic frameworks (MOFs) resulted in significant contributions to diverse applications such as carbon capture, gas storage, heat transformation and separation along with emerging applications toward catalysis, medical imaging, drug delivery, and sensing. The unique in situ and ex situ structural features of MOFs can be tailored by conceptual selection of the organic (e.g., ligand) and inorganic (e.g., metal) components. Here, we provide a comprehensive review on the synthesis and characterization of MOFs, particularly with respect to controlling their size and morphology. A better understanding of the specific size and morphological parameters of MOFs will help initiate a new era for their real-world applications. Most importantly, this assessment will help develop novel synthesis methods for MOFs and their hybrid/porous materials counterparts with considerably improved properties in targeted applications.


metal-organic frameworks smart materials novel synthesis advanced materials composite materials green chemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2016R1E1A1A01940995). This research was also supported partially by the R&D Center for Green Patrol Technologies through the R&D for Global Top Environmental Technologies funded by the Ministry of Environment (MOE), Republic of Korea. P. K. also want to thank the Science and Engineering Research Board (SERB), New Delhi, for funding under “Empowerment and Equity Opportunities for Excellence in Science” (No. EEQ/2016/000484).


  1. [1]
    Lehn, J. M. Supramolecular chemistry—Scope and perspectives: Molecules—Supermolecules—Molecular devices. J. Incl. Phenom. 1988, 6, 351–396.CrossRefGoogle Scholar
  2. [2]
    Li, H. L.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.CrossRefGoogle Scholar
  3. [3]
    Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Crystallized frameworks with giant pores: Are there limits to the possible? Acc. Chem. Res. 2005, 38, 217–225.CrossRefGoogle Scholar
  4. [4]
    Tian, Y.-Q.; Zhao, Y. M.; Chen, Z. X.; Zhang, G. N.; Weng, L.-H.; Zhao, D.-Y. Design and generation of extended zeolitic metal-organic frameworks (ZMOFs): Synthesis and crystal structures of Zinc(II) imidazolate polymers with zeolitic topologies. Chem. —Eur. J. 2007, 13, 4146–4154.CrossRefGoogle Scholar
  5. [5]
    Sarma, D.; Ramanujachary, K. V.; Lofland, S. E.; Magdaleno, T.; Natarajan, S. Amino acid based MOFs: Synthesis, structure, single crystal to single crystal transformation, magnetic and related studies in a family of cobalt and nickel aminoisophthales. Inorg. Chem. 2009, 48, 11660–11676.CrossRefGoogle Scholar
  6. [6]
    Ren, Y. W.; Liang, J. X.; Lu, J. X.; Cai, B. W.; Shi, D. B.; Qi, C. R.; Jiang, H. F.; Chen, J.; Zheng, D. 1,4-phenylenediacetatebased Ln MOFs—Synthesis, structures, luminescence, and catalytic activity. Eur. J. Inorg. Chem. 2011, 2011, 4369–4376.CrossRefGoogle Scholar
  7. [7]
    Luo, F.; Che, Y.-X.; Zheng, J.-M. Employing Cd-O-C rod-shaped secondary building units to construct 2D metalorganic frameworks (MOFs): Hydrothermal synthesis, structures, and luminescent properties. J. Coord. Chem. 2008, 61, 2097–2104.CrossRefGoogle Scholar
  8. [8]
    Plateroprats, A. E.; Bernini, M. C.; Medina, M. E.; Lopez-Torres, E.; Gutierrez-Puebla, E.; Monge, M. A.; Snejko, N. Three novel indium MOFs derived from diphenic acid: Synthesis, crystal structures and supramolecular chemistry. CrystEngComm 2011, 13, 4965–4972.CrossRefGoogle Scholar
  9. [9]
    Lee, J. Y.; Roberts, J. M.; Farha, O. K.; Sarjeant, A. A.; Scheidt, K. A.; Hupp, J. T. Synthesis and gas sorption properties of a metal-azolium framework (MAF) material. Inorg. Chem. 2009, 48, 9971–9973.CrossRefGoogle Scholar
  10. [10]
    Farha, O. K.; Hupp, J. T. Rational design, synthesis, purification, and activation of metal-organic framework materials. Acc. Chem. Res. 2010, 43, 1166–1175.CrossRefGoogle Scholar
  11. [11]
    Kim, J.; Chen, B. L.; Reineke, T. M.; Li, H. L.; Eddaoudi, M.; Moler, D. B.; O’Keeffe, M.; Yaghi, O. M. Assembly of metalorganic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures. J. Am. Chem. Soc. 2001, 123, 8239–8247.CrossRefGoogle Scholar
  12. [12]
    Wen, L.; Shi, W.; Chen, X. T.; Li, H. H.; Cheng, P. A Porous Metal-organic framework based on triazoledicarboxylate ligands—Synthesis, structure, and gas-sorption studies. Eur. J. Inorg. Chem. 2012, 2012, 3562–3568.CrossRefGoogle Scholar
  13. [13]
    Tan, C. R. Design and synthesis of reticular MOFs with high porosity and gas storage. Ph.D. Dissertation, University of Nottingham, Nottingham, 2013.Google Scholar
  14. [14]
    Wang, W. J.; Yuan, D. Q. Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation. Sci. Rep. 2014, 4, 5711.CrossRefGoogle Scholar
  15. [15]
    Liu, S.; Sun, L. X.; Xu, F.; Zhang, J.; Jiao, C. L.; Li, F.; Li, Z. B.; Wang, S.; Wang, Z. Q.; Jiang, X. et al. Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity. Energy Environ. Sci. 2013, 6, 818–823.CrossRefGoogle Scholar
  16. [16]
    Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Hydrogen storage in microporous metal-organic frameworks. Science 2003, 300, 1127–1129.CrossRefGoogle Scholar
  17. [17]
    Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3(MOF-5). J. Am. Chem. Soc. 2007, 129, 14176–14177.CrossRefGoogle Scholar
  18. [18]
    Manju; Roy, P. K.; Ramanan, A.; Rajagopal, C. Core-shell polysiloxane-MOF 5 microspheres as a stationary phase for gas-solid chromatographic separation. RSC Adv. 2014, 4, 17429–17433.CrossRefGoogle Scholar
  19. [19]
    Maes, M.; Alaerts, L.; Vermoortele, F.; Ameloot, R.; Couck, S.; Finsy, V.; Denayer, J. F. M.; De Vos, D. E. Separation of C5-hydrocarbons on microporous materials: Complementary performance of MOFs and zeolites. J. Am. Chem. Soc. 2010, 132, 2284–2292.CrossRefGoogle Scholar
  20. [20]
    Li, K. H.; Olson, D. H.; Lee, J. Y.; Bi, W. H.; Wu, K.; Yuen, T.; Xu, Q.; Li, J. Multifunctional microporous MOFs exhibiting gas/hydrocarbon adsorption selectivity, separation capability and three-dimensional magnetic ordering. Adv. Funct. Mater. 2008, 18, 2205–2214.CrossRefGoogle Scholar
  21. [21]
    Liu, Y. H.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L.; Mi, J. G. Comparative study of separation performance of COFs and MOFs for CH4/CO2/H2 mixtures. Ind Eng. Chem. Res. 2010, 49, 2902–2906.CrossRefGoogle Scholar
  22. [22]
    Didas, S. A.; Choi, S.; Chaikittisilp, W.; Jones, C. W. Amineoxide hybrid materials for CO2 capture from ambient air. Acc. Chem. Res. 2015, 48, 2680–2687.CrossRefGoogle Scholar
  23. [23]
    Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S. Q.; Space, B.; Wojtas, L. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 2013, 495, 80–84.CrossRefGoogle Scholar
  24. [24]
    Shekhah, O.; Belmabkhout, Y.; Chen, Z. J.; Guillerm, V.; Cairns, A.; Adil, K.; Eddaoudi, M. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nat. Commun. 2014, 5, 4228.CrossRefGoogle Scholar
  25. [25]
    Xiang, S. C.; He, Y. B.; Zhang, Z. J.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B. L. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun. 2012, 3, 954.CrossRefGoogle Scholar
  26. [26]
    Li, B. Y.; Zhang, Y. M.; Ma, D. X.; Li, L.; Li, G. H.; Li, G. D.; Shi, Z.; Feng, S. H. A strategy toward constructing a bifunctionalized MOF catalyst: Post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chem. Commun. 2012, 48, 6151.CrossRefGoogle Scholar
  27. [27]
    Hwang, Y. K.; Hong, D. Y.; Chang, J. S.; Jhung, S. H.; Seo, Y. K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angew. Chem., Int. Ed. 2008, 47, 4144–4148.CrossRefGoogle Scholar
  28. [28]
    Luz, I.; Xamena, F. X. L. I.; Corma, A. Bridging homogeneous and heterogeneous catalysis with MOFs: "Click" reactions with Cu-MOF catalysts. J. Catal. 2010, 276, 134–140.CrossRefGoogle Scholar
  29. [29]
    Luz, I.; Xamena, F. X. L. I.; Corma, A. Bridging homogeneous and heterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines. J. Catal. 2012, 285, 285–291.CrossRefGoogle Scholar
  30. [30]
    Moon, S. Y; Liu, Y. Y; Hupp, J. T.; Farha, O. K. Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework. Angew. Chem., Int. Ed. 2015, 54, 6795–6799.CrossRefGoogle Scholar
  31. [31]
    Beyzavi, M. H.; Klet, R. C.; Tussupbayev, S.; Borycz, J.; Vermeulen, N. A.; Cramer, C. J.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K. A hafnium-based metal-organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. J. Am. Chem. Soc. 2014, 136, 15861–15864.CrossRefGoogle Scholar
  32. [32]
    Larous, S.; Meniai, A.-H. Adsorption of diclofenac from aqueous solution using activated carbon prepared from olive stones. Int. J. Hydrogen Energy 2016, 41, 10380–10390.CrossRefGoogle Scholar
  33. [33]
    Li, L.; Sun, K. K.; Fan, L.; Ma, D.; Liu, L. Preparation and drug-delivery properties of hybrid materials MOFs/graphite oxide. Sci. Adv. Mater. 2016, 8, 1628–1633.CrossRefGoogle Scholar
  34. [34]
    Ibrahim, M.; Sabouni, R.; Husseini, G. A. Anti-cancer drug delivery using metal organic frameworks (MOFs). Curr. Med. Chem. 2016, 24, 193–214.CrossRefGoogle Scholar
  35. [35]
    Chowdhuri, A. R.; Bhattacharya, D.; Sahu, S. K. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton trans. 2016, 45, 2963–2973.CrossRefGoogle Scholar
  36. [36]
    Horcajada, P.; Serre, C.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem., Int. Ed. 2006, 45, 5974–5978.CrossRefGoogle Scholar
  37. [37]
    Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Férey, G. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 2008, 130, 6774–6780.CrossRefGoogle Scholar
  38. [38]
    Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178.CrossRefGoogle Scholar
  39. [39]
    Zhou, S. Y.; Zou, X. Q.; Sun, F. X.; Zhang, F.; Fan, S.; Zhao, H. J.; Schiestel, T.; Zhu, G. S. Challenging fabrication of hollow ceramic fiber supported Cu3(BTC)2 membrane for hydrogen separation. J. Mater. Chem. 2012, 22, 10322–10328.CrossRefGoogle Scholar
  40. [40]
    Sakata, Y.; Furukawa, S.; Kondo, M.; Hirai, K.; Horike, N.; Takashima, Y; Uehara, H.; Louvain, N.; Meilikhov, M.; Tsuruoka, T. et al. Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 2013, 339, 193–196.CrossRefGoogle Scholar
  41. [41]
    Liu, Y. L.; Gao, P. F.; Huang, C. Z.; Li, Y. F. Shape-and size-dependent catalysis activities of iron-terephthalic acid metal-organic frameworks. Sci. China Chem. 2015, 58, 1553–1560.CrossRefGoogle Scholar
  42. [42]
    Stavila, V.; Volponi, J.; Katzenmeyer, A. M.; Dixon, M. C.; Allendorf, M. D. Kinetics and mechanism of metal-organic framework thin film growth: Systematic investigation of HKUST-1 deposition on QCM electrodes. Chem. Sci. 2012, 3, 1531–1540.CrossRefGoogle Scholar
  43. [43]
    Hinterholzinger, F.; Scherb, C.; Ahnfeldt, T.; Stock, N.; Bein, T. Oriented growth of the functionalized metal-organic framework CAU-1 on -OH-and -COOH-terminated self-assembled monolayers. Phys. Chem. Chem. Phys. 2010, 12, 4515–4520.CrossRefGoogle Scholar
  44. [44]
    Ban, Y. J.; Li, Y. S.; Liu, X. L.; Peng, Y.; Yang, W. S. Solvothermal synthesis of mixed-ligand metal-organic framework ZIF-78 with controllable size and morphology. MicroporousMesoporousMater. 2013, 173, 29–36.Google Scholar
  45. [45]
    McKinstry, C.; Cussen, E. J.; Fletcher, A. J.; Patwardhan, S. V.; Sefcik, J. Effect of synthesis conditions on formation pathways of metal organic framework (MOF-5) crystals. Cryst. Growth Design 2013, 13, 5481–5486.CrossRefGoogle Scholar
  46. [46]
    Hu, L.; Zhang, P.; Chen, Q. W.; Zhong, H.; Hu, X. Y.; Zheng, X. R.; Wang, Y.; Yan, N. Morphology-controllable synthesis of metal organic framework Cd3[Co(CN)6]2·nH2O nanostructures for hydrogen storage applications. Cryst. Growth Design 2012, 12, 2257–2264.CrossRefGoogle Scholar
  47. [47]
    Gao, J.; Huang, C. H.; Lin, Y. F.; Tong, P.; Zhang, L. In situ solvothermal synthesis of metal-organic framework coated fiber for highly sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons. J. Chromatogr. 2016, 1436, 1–8.CrossRefGoogle Scholar
  48. [48]
    Ordonez, C.; Kinnibrugh, T. L.; Xu, H. W.; Lindline, J.; Timofeeva, T.; Wei, Q. Synthesis of framework isomer MOFs containing zinc and 4-tetrazolyl benzenecarboxylic acid via a structure directing solvothermal approach. Crystals 2015, 5, 193–205.CrossRefGoogle Scholar
  49. [49]
    Luo, F.; Che, Y. X.; Zheng, J. M. Construction of microporous metal-organic frameworks (MOFs) by Mn-O-C rod-like secondary building units (SBUs): Solvothermal synthesis, structure, thermostability, and magnetic properties. Inorg. Chem. Commun. 2008, 11, 358–362.CrossRefGoogle Scholar
  50. [50]
    Khan, N. A.; Kang, I. J.; Seok, H. Y.; Jhung, S. H. Facile synthesis of nano-sized metal-organic frameworks, chromium- benzenedicarboxylate, MIL-101. Chem. Eng. J. 2011, 166, 1152–1157.CrossRefGoogle Scholar
  51. [51]
    Bag, P. P.; Wang, X. S.; Cao, R. Microwave-assisted large scale synthesis of lanthanide metal-organic frameworks (Ln-MOFs), having a preferred conformation and photoluminescence properties. Dalton Trans. 2015, 44, 11954–11962.CrossRefGoogle Scholar
  52. [52]
    Zhu, W.; Liu, P. J.; Xiao, S. J.; Wang, W. C.; Zhang, D. Q.; Li, H. X. Microwave-assisted synthesis of Ag-doped MOFs-like organotitanium polymer with high activity in visible-light driven photocatalytic NO oxidization. Appl. Catal. B: Environ. 2015, 172-173, 46–51.CrossRefGoogle Scholar
  53. [53]
    Yang, H. M.; Song, X. L.; Yang, T. L.; Liang, Z. H.; Fan, C. M.; Hao, X. G. Electrochemical synthesis of flower shaped morphology MOFs in an ionic liquid system and their electrocatalytic application to the hydrogen evolution reaction. RSCAdv. 2014, 4, 15720–15726.Google Scholar
  54. [54]
    Sachdeva, S.; Pustovarenko, A.; Sudholter, E. J. R.; Kapteijn, F.; de Smet, L. C. P. M.; Gascon, J. Control of interpenetration of copper-based MOFs on supported surfaces by electrochemical synthesis. CrystEngComm 2016, 18, 4018–4022.CrossRefGoogle Scholar
  55. [55]
    Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E. Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chem. Mater. 2009, 21, 2580–2582.CrossRefGoogle Scholar
  56. [56]
    Baser, H.; Schwieger, W. Ultrasonic monitoring of zeolite A and Metal Organic Frameworks (MOFs) formations: A comparative study. Stud. Surface Sci. Catal. 2008, 174, 455–458.CrossRefGoogle Scholar
  57. [57]
    Li, Z. Q.; Qiu, L. G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z. Y.; Jiang, X. Ultrasonic synthesis of the microporous metalorganic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Mater. Lett. 2009, 63, 78–80.CrossRefGoogle Scholar
  58. [58]
    Li, Z. Q.; Tai, Y. F.; Zhang, M.; Qiu, L. G. Ultrasonic synthesis Cu(INA)24H2O nanocrystals and catalytic oxidation of styrene. Chem. Res. Appl. 2014, 26, 13–17.Google Scholar
  59. [59]
    Ji, M.; Hao, C.; Wang, D. D.; Li, H. J.; Qiu, J. S. A time-dependent density functional theory study on the effect of electronic excited-state hydrogen bonding on luminescent MOFs. Dalton Trans. 2013, 42, 3464–3470.CrossRefGoogle Scholar
  60. [60]
    Choi, J. H.; Choi, Y. J.; Lee, J. W.; Shin, W. H.; Kang, J. K. Tunability of electronic band gaps from semiconducting to metallic states via tailoring Zn ions in MOFs with Co ions. Phys. Chem. Chem. Phys. 2009, 11, 628–631.CrossRefGoogle Scholar
  61. [61]
    Mahata, P.; Sundaresan, A.; Natarajan, S. The role of temperature on the structure and dimensionality of MOFs: An illustrative study of the formation of manganese oxy-bis(benzoate) structures. Chem. Commun. 2007, 4471–4473. DOI: 10.1039/ B708060C.Google Scholar
  62. [62]
    Li, Y.; Wang, N.; Huang, J. Y.; Zhang, F. H.; Xiong, Y. J.; Cheng, Q.; Fang, J. F.; Zhu, F. F.; Long, Y.; Yue, S. T. KI-induced synthesis of highly connected 3D KI-LnIII heterobimetallic MOFs: Temperature-dependent structure and physical properties. CrystEngComm 2016, 18, 1570–1576.CrossRefGoogle Scholar
  63. [63]
    Mahata, P.; Prabu, M.; Natarajan, S. Role of temperature and time in the formation of infinite -M-O-M-linkages and isolated clusters in MOFs: A few illustrative examples. Inorg. Chem. 2008, 47, 8451–8463.CrossRefGoogle Scholar
  64. [64]
    Cheng, X. Q.; Zhang, A. F.; Hou, K. K.; Liu, M.; Wang, Y. X.; Song, C. S.; Zhang, G. L.; Guo, X. W. Size-and morphologycontrolled NH2-MIL-53(Al) prepared in DMF-water mixed solvents. Dalton Trans. 2013, 42, 13698–13705.CrossRefGoogle Scholar
  65. [65]
    Li, J.; Yang, G. P.; Hou, L.; Cui, L.; Li, Y. P.; Wang, Y. Y.; Shi, Q. Z. Three new solvent-directed 3D lead(II)-MOFs displaying the unique properties of luminescence and selective CO2 sorption. Dalton Trans. 2013, 42, 13590–13598.CrossRefGoogle Scholar
  66. [66]
    Ju, Z. F.; Yuan, D. Q. Wings waving: Coordinating solvent induced structural diversity of new Cu(II) flexible MOFs with crystal to crystal transformation and gas sorption capability. CrystEngComm 2013, 15, 9513–9520.CrossRefGoogle Scholar
  67. [67]
    Seetharaj, R.; Vandana, P. V.; Arya, P.; Mathew, S. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arab. J. Chem. 2016, in press, DOI: 10.1016/j.arabjc.2016.01.003.Google Scholar
  68. [68]
    Polevaya, I. S.; Makitra, G. G.; Marshalok, G. A.; Kovalskyi, Y. P. Effect of the reactants molar ratio on the kinetics of cycloaddition of 2,3-dimethylbuta-1,3-diene to allyl methacrylate. Russ. J. Gen. Chem. 2012, 82, 1970–1974.CrossRefGoogle Scholar
  69. [69]
    Huang, K.; Qiu, L. P.; Meng, J. F.; Wang, D. Optimization of crystallization of magnesium ammonium phosphate: Initial phosphate concentration, PH and reactants molar ratio. Appl. Mech. Mater. 2013, 295-298, 1289–1292.CrossRefGoogle Scholar
  70. [70]
    Pan, Y. C.; Heryadi, D.; Zhou, F.; Zhao, L.; Lestari, G.; Su, H. B.; Lai, Z. P. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 2011, 13, 6937–6940.CrossRefGoogle Scholar
  71. [71]
    Pal, M.; Mathews, N. R.; Santiago, P.; Mathew, X. A facile one-pot synthesis of highly luminescent CdS nanoparticles using thioglycerol as capping agent. J. Nanopart. Res. 2012, 14, 916.CrossRefGoogle Scholar
  72. [72]
    Li, X. L.; Tian, W. G.; Xiao, C. X.; Stanton, A. L. D.; Pei, Y. C.; Jain, P. K.; Huang, W. Y. Synthesis of monodisperse palladium nanoclusters using metal-organic frameworks as sacrificial templates. ChemNanoMat 2016, 2, 810–815.CrossRefGoogle Scholar
  73. [73]
    Lai, J. P.; Niu, W. X.; Luque, R.; Xu, G. B. Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 2015, 10, 240–267.CrossRefGoogle Scholar
  74. [74]
    Wang, Y.; Yang, H. Oleic acid as the capping agent in the synthesis of noble metal nanoparticles in imidazolium-based ionic liquids. Chem. Commun. 2006, 2545–2547.Google Scholar
  75. [75]
    Masoomi, M. Y.; Morsali, A. Morphological study and potential applications of nano metal-organic coordination polymers. RSCAdv. 2013, 3, 19191–19218.Google Scholar
  76. [76]
    Kuppler, R. J.; Timmons, D. J.; Fang, Q. R.; Li, J. R.; Makal, T. A.; Young, M. D.; Yuan, D. Q.; Zhao, D.; Zhuang, W. J.; Zhou, H. C. Potential applications of metal-organic frameworks. Coord. Chem. Rev. 2009, 253, 3042–3066.CrossRefGoogle Scholar
  77. [77]
    Fordham, S.; Wang, X.; Bosch, M.; Zhou, H. C. Lanthanide metal-organic frameworks: Syntheses, properties, and potential applications. In: Lanthanide Metal-Organic Frameworks. Structure and Bonding. Cheng, P., Ed.; Springer: Berlin Heidelberg, 2014.Google Scholar
  78. [78]
    Li, Y. W.; Yang, R. T. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. J. Am. Chem. Soc. 2006, 128, 726–727.CrossRefGoogle Scholar
  79. [79]
    Li, J.-R.; Ma, Y. G.; McCarthy, M. C.; Sculley, J.; Yu, J. M.; Jeong, H.-K.; Balbuena, P. B.; Zhou, H.-C. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 2011, 255, 1791–1823.CrossRefGoogle Scholar
  80. [80]
    Frost, H.; Düren, T.; Snurr, R. Q. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metalorganic frameworks. J. Phys. Chem. B 2006, 110, 9565–9570.CrossRefGoogle Scholar
  81. [81]
    Ma, S. Q.; Zhou, H.-C. A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity. J. Am. Chem. Soc. 2006, 128, 11734–11735.CrossRefGoogle Scholar
  82. [82]
    Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W. Hydrogen storage in metal-organic frameworks. Chem. Rev. 2012, 112, 782–835.CrossRefGoogle Scholar
  83. [83]
    Hirscher, M. Hydrogen storage by cryoadsorption in ultrahigh-porosity metal-organic frameworks. Angew. Chem., Int. Ed. 2011, 50, 581–582.CrossRefGoogle Scholar
  84. [84]
    Yuan, D. Q.; Zhao, D.; Sun, D. F.; Zhou, H. C. An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem., Int. Ed. 2010, 49, 5357–5361.CrossRefGoogle Scholar
  85. [85]
    Kolotilov, S. V.; Pavlishchuk, V. V. Role of the chemical structure of metal-organic framework compounds in the adsorption of hydrogen. Theor. Exp. Chem. 2009, 45, 277–301.CrossRefGoogle Scholar
  86. [86]
    Xiang, Z. H.; Cao, D. P.; Shao, X. H.; Wang, W. C.; Zhang, J. W.; Wu, W. Z. Facile preparation of high-capacity hydrogen storage metal-organic frameworks: A combination of microwave-assisted solvothermal synthesis and supercritical activation. Chem. Eng. Sci. 2010, 65, 3140–3146.CrossRefGoogle Scholar
  87. [87]
    Khan, N. A.; Jhung, S.-H. Facile syntheses of metal-organic framework Cu3(BTC)2(H2O)3 under ultrasound. Bull. Korean Chem. Soc. 2009, 30, 2921–2926.CrossRefGoogle Scholar
  88. [88]
    Ni, Z.; Masel, R. I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2006, 128, 12394–12395.CrossRefGoogle Scholar
  89. [89]
    Klinowski, J.; Paz, F. A. A.; Silva, P.; Rocha, J. Microwaveassisted synthesis of metal-organic frameworks. Dalton Trans. 2011, 40, 321–330.CrossRefGoogle Scholar
  90. [90]
    Schlesinger, M.; Schulze, S.; Hietschold, M.; Mehring, M. Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu2(BTC)3(H2O)3] and [Cu2(BTC)(OH)(H2O)]. Microporous MesoporousMater 2010, 132, 121–127.CrossRefGoogle Scholar
  91. [91]
    Zhuang, J. L.; Ceglarek, D.; Pethuraj, S.; Terfort, A. Rapid room-temperature synthesis of metal-organic framework HKUST-1 crystals in bulk and as oriented and patterned thin films. Adv. Funct. Mater. 2011, 21, 1442–1447.CrossRefGoogle Scholar
  92. [92]
    Yang, H. W.; Orefuwa, S.; Goudy, A. Study of mechanochemical synthesis in the formation of the metal-organic framework Cu3(BTC)2 for hydrogen storage. Microporous Mesoporous Mater. 2011, 143, 37–45.CrossRefGoogle Scholar
  93. [93]
    Wee, L. H.; Lohe, M. R.; Janssens, N.; Kaskel, S.; Martens, J. A. Fine tuning of the metal-organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range. J. Mater. Chem. 2012, 22, 13742–13746.CrossRefGoogle Scholar
  94. [94]
    Meledina, M.; Turner, S.; Filippousi, M.; Leus, K.; Lobato, I.; Ramachandran, R. K.; Dendooven, J.; Detavernier, C.; Van Der Voort, P.; Van Tendeloo, G. Direct imaging of ALD deposited Pt nanoclusters inside the giant pores of MIL-101. Part. Part. Syst. Characteriz. 2016, 33, 382–387.CrossRefGoogle Scholar
  95. [95]
    Gordon, J.; Kazemian, H.; Rohani, S. MIL-53 (Fe), MIL-101, and SBA-15 porous materials: Potential platforms for drug delivery. Mater. Sci. Eng.: C 2015, 47, 172–179.CrossRefGoogle Scholar
  96. [96]
    Hinks, N. J.; McKinlay, A. C.; Xiao, B.; Wheatley, P. S.; Morris, R. E. Metal organic frameworks as NO delivery materials for biological applications. Microporous Mesoporous Mater. 2010, 129, 330–334.CrossRefGoogle Scholar
  97. [97]
    Guo, J. F.; Fang, R. M.; Huang, C. Z.; Li, Y. F. Dual amplifying fluorescence anisotropy for detection of respiratory syncytial virus DNA fragments with size-control synthesized metal-organic framework MIL-101. RSC Adv. 2015, 5, 46301–46306.CrossRefGoogle Scholar
  98. [98]
    Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B. L.; O’Keeffe, M.; Yaghi, O. M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005, 127, 1504–1518.CrossRefGoogle Scholar
  99. [99]
    Qi, Z.-P.; Yang, J.-M.; Kang, Y.-S.; Sun, W.-Y. Morphology evolution and gas adsorption of porous metal-organic framework microcrystals. Dalton Trans. 2015, 44, 16888–16893.CrossRefGoogle Scholar
  100. [100]
    Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.CrossRefGoogle Scholar
  101. [101]
    Ma, M. Y.; Zacher, D.; Zhang, X. N.; Fischer, R. A.; Metzler-Nolte, N. A Method for the preparation of highly porous, nanosized crystals of isoreticular metal-organic frameworks. Cryst. Growth Design 2011, 11, 185–189.CrossRefGoogle Scholar
  102. [102]
    Burrows, A. D.; Cassar, K.; Friend, R. M. W.; Mahon, M. F.; Rigby, S. P.; Warren, J. E. Solvent hydrolysis and templating effects in the synthesis of metal-organic frameworks. CrystEngComm 2005, 7, 548–550.CrossRefGoogle Scholar
  103. [103]
    Khan, N. A.; Jhung, S. H. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coord. Chem. Rev. 2015, 285, 11–23.CrossRefGoogle Scholar
  104. [104]
    Klinowski, J.; Paz, F. A. A.; Silva, P.; Rocha, J. ChemInform abstract: Microwave-assisted synthesis of metal-organic frameworks. ChemInform. 2011, 42, 321–330.CrossRefGoogle Scholar
  105. [105]
    Blanita, G.; Borodi, G.; Lazar, M. D.; Bins, A. R.; Barbu-Tudoran, L.; Coldea, I.; Lupu, D. Microwave assisted non-solvothermal synthesis of metal-organic frameworks. RSC Adv. 2016, 6, 25967–25974.CrossRefGoogle Scholar
  106. [106]
    Wang, P. Y.; Liu, J.; Liu, C. F.; Zheng, B.; Zou, X. Q.; Jia, M. J.; Zhu, G. S. Electrochemical synthesis and catalytic properties of encapsulated metal clusters within zeolitic imidazolate frameworks. Chem. -Eur. J. 2016, 22, 16613–16620.CrossRefGoogle Scholar
  107. [107]
    Lin, Z. J.; Wragg, D. S.; Warren, J. E.; Morris, R. E. Anion control in the ionothermal synthesis of coordination polymers. J. Am. Chem. Soc. 2007, 129, 10334–10335.CrossRefGoogle Scholar
  108. [108]
    Safarifard, V.; Morsali, A. Applications of ultrasound to the synthesis of nanoscale metal-organic coordination polymers. Coord. Chem. Rev. 2015, 292, 1–14.CrossRefGoogle Scholar
  109. [109]
    Khoshhal, S.; Ghoreyshi, A. A.; Jahanshahi, M.; Mohammadi, M. Study of the temperature and solvent content effects on the structure of Cu-BTC metal organic framework for hydrogen storage. RSC Adv. 2015, 5, 24758–24768.CrossRefGoogle Scholar
  110. [110]
    Son, W. J.; Kim, J.; Kim, J.; Ahn, W. S. Sonochemical synthesis of MOF-5. Chem. Commun. 2008, 6336–6338. DOI: 10.1039/B814740J.Google Scholar
  111. [111]
    Bradshaw, D.; Garai, A.; Huo, J. Metal-organic framework growth at functional interfaces: Thin films and composites for diverse applications. Chem. Soc. Rev. 2012, 41, 2344–2381.CrossRefGoogle Scholar
  112. [112]
    Shekhah, O.; Liu, J.; Fischer, R. A.; Woll, C. MOF thin films: Existing and future applications. Chem. Soc. Rev. 2011, 40, 1081–1106.CrossRefGoogle Scholar
  113. [113]
    Ranft, A.; Betzler, S. B.; Haase, F.; Lotsch, B. V. Additivemediated size control of MOF nanoparticles. CrystEngComm 2013, 15, 9296–9300.CrossRefGoogle Scholar
  114. [114]
    Yang, J.; Grzech, A.; Mulder, F. M.; Dingemans, T. J. The hydrogen storage capacity of mono-substituted MOF-5 derivatives: An experimental and computational approach. Microporous Mesoporous Mater. 2013, 171, 65–71.CrossRefGoogle Scholar
  115. [115]
    Rowsell, J. L. C.; Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc. 2006, 128, 1304–1315.CrossRefGoogle Scholar
  116. [116]
    Eddaoudi, M.; Kim, J.; Vodak, D.; Sudik, A.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Geometric requirements and examples of important structures in the assembly of square building blocks. Proc. Natl. Acad. Sci. USA 2002, 99, 4900–4904.CrossRefGoogle Scholar
  117. [117]
    Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 2014, 114, 1343–1370.CrossRefGoogle Scholar
  118. [118]
    Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O’Keeffe, M.; Yaghi, O. M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 2009, 131, 3875–3877.CrossRefGoogle Scholar
  119. [119]
    Diring, S.; Furukawa, S.; Takashima, Y.; Tsuruoka, T.; Kitagawa, S. Controlled multiscale synthesis of porous coordination polymer in nano/micro regimes. Chem. Mater. 2010, 22, 4531–4538.CrossRefGoogle Scholar
  120. [120]
    Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.CrossRefGoogle Scholar
  121. [121]
    Guo, H. L.; Zhu, Y. Z.; Wang, S.; Su, S. Q.; Zhou, L.; Zhang, H. J. Combining coordination modulation with acid-base adjustment for the control over size of metal-organic frameworks. Chem. Mater. 2012, 24, 444–450.CrossRefGoogle Scholar
  122. [122]
    Hermes, S.; Witte, T.; Hikov, T.; Zacher, D.; Bahnmüller, S.; Langstein, G.; Huber, K.; Fischer, R. A. Trapping metal-organic framework nanocrystals: An in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. J. Am. Chem. Soc. 2007, 129, 5324–5325.CrossRefGoogle Scholar
  123. [123]
    Zacher, D.; Liu, J. N.; Huber, K.; Fischer, R. A. Nanocrystals of [Cu3(btc)2] (HKUST-1): A combined time-resolved light scattering and scanning electron microscopy study. Chem. Commuun. 2009, 1031–1033.Google Scholar
  124. [124]
    Jiang, H. X.; Wang, Q. Y.; Wang, H. Q.; Chen, Y. F.; Zhang, M. H. Temperature effect on the morphology and catalytic performance of Co-MOF-74 in low-temperature NH3-SCR process. Catal. Commun. 2016, 80, 24–27.CrossRefGoogle Scholar
  125. [125]
    Zhu, L. L.; Tan, C. F.; Gao, M. M.; Ho, G. W. Microreactors: Design of a metal oxide-organic framework (MoOF) foam microreactor: Solar-induced direct pollutant degradation and hydrogen generation (Adv. Mater. 47/2015). Adv. Mater. 2015, 27, 7681.CrossRefGoogle Scholar
  126. [126]
    Tsuruoka, T.; Furukawa, S.; Takashima, Y.; Yoshida, K.; Isoda, S.; Kitagawa, S. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew. Chem., Int. Ed. 2009, 48, 4739–4743.CrossRefGoogle Scholar
  127. [127]
    Guo, H. L.; Zhu, Y. Z.; Qiu, S. L.; Lercher, J. A.; Zhang, H. J. Coordination modulation induced synthesis of nanoscale Eu1-ITbI-metal-organic frameworks for luminescent thin films. Adv. Mater. 2010, 22, 4190–4192.CrossRefGoogle Scholar
  128. [128]
    Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M. Controlling zeolitic imidazolate framework nano-and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 2011, 23, 2130–2141.CrossRefGoogle Scholar
  129. [129]
    Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chemistry 2011, 17, 6643–6651.CrossRefGoogle Scholar
  130. [130]
    Hu, Z. G.; Castano, I.; Wang, S. N.; Wang, Y. X.; Peng, Y. W.; Qian, Y. H.; Chi, C. L.; Wang, X. R.; Zhao, D. Modulator effects on the water-based synthesis of Zr/Hf metal-organic frameworks: Quantitative relationship studies between modulator, synthetic condition, and performance. Cryst. Growth Design 2016, 16, 2295–2301.CrossRefGoogle Scholar
  131. [131]
    Drache, F.; Bon, V.; Senkovska, I.; Getzschmann, J.; Kaskel, S. The modulator driven polymorphism of Zr(IV) based metalorganic frameworks. Philos. Trans. A Math. Phys. Eng. Sci. 2017, 375, 20160027.CrossRefGoogle Scholar
  132. [132]
    Chalati, T.; Horcajada, P.; Gref, R.; Couvreur, P.; Serre, C. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J. Mater. Chem. 2011, 21, 2220–2227.CrossRefGoogle Scholar
  133. [133]
    Shi, N. E.; Du, W.; Jin, X. L.; Zhang, Y.; Han, M.; Xu, Z.; Xie, L. H.; Huang, W. Surfactant charge mediated shape control of nano-or microscaled coordination polymers: The case of tetrapyridylporphine based metal complex. Cryst. Growth Design 2014, 14, 1251–1257.CrossRefGoogle Scholar
  134. [134]
    Gao, J. K.; Ye, K. Q.; Yang, L.; Xiong, W. W.; Ye, L.; Wang, Y; Zhang, Q. C. Growing crystalline zinc-1,3,5-benzenetricarboxylate metal-organic frameworks in different surfactants. Inorg. Chem. 2014, 53, 691–693.CrossRefGoogle Scholar
  135. [135]
    Tao, C. A.; Hu, Z. H.; Meng, L. Q.; Wang, F.; Wang, J. F. Sonochemical synthesis of photoluminescent nanoscale Eu(III)-containing metal-organic frameworks. Mater. Sci. 2015, 21, 554–558.Google Scholar
  136. [136]
    Yao, M. S.; Tang, W. X.; Wang, G. E.; Nath, B.; Xu, G. MOF Thin film-coated metal oxide nanowire array: Significantly improved chemiresistor sensor performance. Adv. Mater. 2016, 28, 5229–5234.CrossRefGoogle Scholar
  137. [137]
    Sun, W. Z.; Zhai, X. S.; Zhao, L. Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions. Chem. Eng. J. 2016, 289, 59–64.CrossRefGoogle Scholar
  138. [138]
    Gu, Z.-G.; Fang, H.-C.; Yin, P.-Y.; Tong, L.; Ying, Y.; Hu, S.-J.; Li, W.-S.; Cai, Y-P. A family of three-dimensional lanthanide-zinc heterometal-organic frameworks from 4,5-imidazoledicarboxylate and oxalate. Cryst. Growth Design 2011, 11, 2220–2227.CrossRefGoogle Scholar
  139. [139]
    Ghosh, S. K.; Kitagawa, S. Solvent as structure directing agent for the synthesis of novel coordination frameworks using a tripodal flexible ligand. CrystEngComm 2008, 10, 1739–1742.CrossRefGoogle Scholar
  140. [140]
    Fan, X. X.; Wang, W.; Li, W.; Zhou, J. W.; Wang, B.; Zheng, J.; Li, X. G. Highly porous ZIF-8 nanocrystals prepared by a surfactant mediated method in aqueous solution with enhanced adsorption kinetics. ACS Appl. Mater. Interfaces 2014, 6, 14994–14999.CrossRefGoogle Scholar
  141. [141]
    Sun, F. X.; Zhu, G. S. Solvent-directed synthesis of chiral and non-centrosymmetric metal-organic frameworks based on pyridine-3,5-dicarboxylate. Inorg. Chem. Commun. 2013, 38, 115–118.CrossRefGoogle Scholar
  142. [142]
    Laurikenas, A.; Barkauskas, J.; Reklaitis, J.; Niaura, G.; Baltrunas, D.; Kareiva, A. Formation peculiarities of iron (III) acetate: Potential precursor for iron metal-organic frameworks (MOFs). Lithuanian J. Phys. 2016, 56, 35–41.CrossRefGoogle Scholar
  143. [143]
    Yoon, J. H.; Choi, S. B.; Oh, Y. J.; Seo, M. J.; Jhon, Y. H.; Lee, T. B.; Kim, D.; Choi, S. H.; Kim, J. A porous mixed-valent iron MOF exhibiting the acs net: Synthesis, characterization and sorption behavior of Fe3O(F4BDC)3(H2O)3′(DMF)3.5. Catal. Today 2007, 120, 324–329.CrossRefGoogle Scholar
  144. [144]
    Zhang, S. L.; Jiao, Z.; Yao, W. X. A simple solvothermal process for fabrication of a metal-organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples. J. Chromatogr. A 2014, 1371, 74–81.CrossRefGoogle Scholar
  145. [145]
    Debatin, F.; Thomas, A.; Kelling, A.; Hedin, N.; Bacsik, Z.; Senkovska, I.; Kaskel, S.; Junginger, M.; Müller, H.; Schilde, U. et al. In situ synthesis of an imidazolate-4-amide-5-imidate ligand and formation of a microporous zinc-organic framework with H2-and CO2-storage ability. Angew. Chem., Int. Ed 2010, 49, 1258–1262.CrossRefGoogle Scholar
  146. [146]
    Zhao, D.; Yuan, D. Q.; Yakovenko, A.; Zhou, H. C. A NbO-type metal-organic framework derived from a polyyne-coupled di-isophthalate linker formed in situ. Chem. Commun. 2010, 46, 4196–4198.CrossRefGoogle Scholar
  147. [147]
    Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196–1231.CrossRefGoogle Scholar
  148. [148]
    Farha, O. K.; Yazaydin, A. Ö.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2010, 2, 944–948.CrossRefGoogle Scholar
  149. [149]
    Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T. Control over catenation in metal-organic frameworks via rational design of the organic building block. J. Am. Chem. Soc. 2009, 132, 950–952.CrossRefGoogle Scholar
  150. [150]
    Bury, W.; Fairen-Jimenez, D.; Lalonde, M. B.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T. Control over catenation in pillared paddlewheel metal-organic framework materials via solventassisted linker exchange. Chem. Mater. 2013, 25, 739–744.CrossRefGoogle Scholar
  151. [151]
    Mulfort, K. L.; Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T. An interpenetrated framework material with hysteretic CO2 uptake. Chem.—Eur. J. 2010, 16, 276–281. 27CrossRefGoogle Scholar
  152. [152]
    Alavi, M. A.; Morsali, A. Synthesis and characterization of different nanostructured copper(II) metal-organic frameworks by a ligand functionalization and modulation method. CrystEngComm 2014, 16, 2246–2250.CrossRefGoogle Scholar
  153. [153]
    Buragohain, A.; Van Der Voort, P.; Biswas, S. Facile synthesis and gas adsorption behavior of new fonctionalized Al-MIL-101-X (X = -CH3, -NO2, -OCH3, -C6H4, -F2, -(CH3)2, -(OCH3)2 ) materials. Microporous Mesoporous Mater. 2015, 215, 91–97.CrossRefGoogle Scholar
  154. [154]
    Liu, B. T.; He, Y. P.; Han, L. P.; Singh, V.; Xu, X. N.; Guo, T.; Meng, F. Y.; Xu, X.; York, P.; Liu, Z. X. Microwave-assisted rapid synthesis of γ-cyclodextrin metal-organic frameworks for size control and efficient drug loading. Cryst. Growth Design 2017, 17, 1654–1660.CrossRefGoogle Scholar
  155. [155]
    Abazari, R.; Mahjoub, A. R.; Slawin, A. M. Z.; Carpenter-Warren, C. L. Morphology-and size-controlled synthesis of a metal-organic framework under ultrasound irradiation: An efficient carrier for pH responsive release of anti-cancer drugs and their applicability for adsorption of amoxicillin from aqueous solution. Ultrasonics Sonochem. 2018, 42, 594–608.CrossRefGoogle Scholar
  156. [156]
    Zou, Z.; Li, S. Q.; He, D. G.; He, X. X.; Wang, K. M.; Li, L. L.; Yang, X.; Li, H. F. A versatile stimulus-responsive metalorganic framework for size/morphology tunable hollow mesoporous silica and pH-triggered drug delivery. J. Mater. Chem. B 2017, 5, 2126–2132.CrossRefGoogle Scholar
  157. [157]
    Mao, Y. Y.; Su, B. B.; Cao, W.; Li, J. W.; Ying, Y. L.; Ying, W.; Hou, Y. J.; Sun, L. W.; Peng, X. S. Specific oriented metal-organic framework membranes and their facet-tuned separation performance. ACS Appl. Mater. Interfaces 2014, 6, 15676–15685.CrossRefGoogle Scholar
  158. [158]
    Wang, J. J.; Han, Y. Q.; Xu, H. T.; Xu, Z. L. Microporous assembly and shape control of a new Zn metal-organic framework: Morphology-dependent catalytic performance. Appl. Organom. Chem. 2018, 32, e4097.CrossRefGoogle Scholar
  159. [159]
    Liu, Y. F.; Liu, B. L.; Zhou, Q. F.; Zhang, T. Y.; Wu, W. B. Morphology effect of metal-organic framework HKUST-1 as a catalyst on benzene oxidation. Chem. Res. Chin. Univ. 2017, 33, 971–978.CrossRefGoogle Scholar
  160. [160]
    Sabouni, R.; Kazemian, H.; Rohani, S. Microwave synthesis of the CPM-5 metal organic framework. Chem. Eng. Technol. 2012, 35, 1085–1092.CrossRefGoogle Scholar
  161. [161]
    Liang, W. B.; D’Alessandro, D. M. Microwave-assisted solvothermal synthesis of zirconium oxide based metal-organic frameworks. Chem. Commun. 2013, 49, 3706–3708.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil & Environmental EngineeringHanyang UniversitySeoulRepublic of Korea
  2. 2.Environmental and Water Resources Engineering Division, Department of Civil EngineeringIIT MadrasChennaiIndia
  3. 3.Department of Nano Science and MaterialsCentral University of JammuJammuIndia
  4. 4.Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological EngineeringKorea UniversitySeoulRepublic of Korea

Personalised recommendations