Advertisement

Nano Research

, Volume 11, Issue 9, pp 4574–4586 | Cite as

Emergence of photoluminescence on bulk MoS2 by laser thinning and gold particle decoration

  • Lili Gong
  • Qi Zhang
  • Liangjun Wang
  • Jianfeng Wu
  • Cheng Han
  • Bo Lei
  • Wei Chen
  • Goki Eda
  • Kuan Eng Johnson Goh
  • Chorng Haur SowEmail author
Research Article

Abstract

We demonstrate a facile and effective approach to significantly improve the photoluminescence of bulk MoS2 via laser thinning followed by gold particle decoration. Upon laser thinning of exfoliated bulk MoS2, photoluminescence emerges from the laser-thinned region. After further treatment with an AuCl3 solution, gold particles self-assemble on the laser-thinned region and thick edges, further increasing the fluorescence of bulk MoS2 28 times and the Raman response 3 times. Such fluorescence enhancement can be attributed to both surface plasmon resonance and p-type doping induced by gold particles. The combination of laser thinning and AuCl3 treatment enables the functionalization of bulk MoS2 for optoelectronic applications. It can also provide a viable strategy for mask-free and area-selective p-type doping on single MoS2 flakes.

Keywords

bulk MoS2 photoluminescence laser thinning gold particle plasmonic effect doping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

L. L. G., K. E. J. G. and C. H. S. acknowledge financial support from A*STAR Grant No. 1527000016

Supplementary material

12274_2018_2037_MOESM1_ESM.pdf (1.8 mb)
Emergence of photoluminescence on bulk MoS2 by laser thinning and gold particle decoration

References

  1. [1]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.CrossRefGoogle Scholar
  2. [2]
    Yin, X. B.; Ye, Z. L.; Chenet, D. A.; Ye, Y.; O’Brien, K.; Hone, J. C.; Zhang, X. Edge nonlinear optics on a MoS2 atomic monolayer. Science 2014, 344, 488–490.CrossRefGoogle Scholar
  3. [3]
    Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.CrossRefGoogle Scholar
  4. [4]
    Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.CrossRefGoogle Scholar
  5. [5]
    Lim, Y. R.; Song, W.; Han, J. K.; Lee, Y. B.; Kim, S. J.; Myung, S.; Lee, S. S.; An, K. S.; Choi, C. J.; Lim, J. Waferscale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv. Mater. 2016, 28, 5025–5230.CrossRefGoogle Scholar
  6. [6]
    Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; van der Zant, H. S. J.; Steele, G. A. Laserthinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 2012, 12, 3187–3192.CrossRefGoogle Scholar
  7. [7]
    Lu, J. P.; Lu, J.; Liu, H. W.; Liu, B.; Chan, X. K.; Lin, J. D.; Chen, W. A.; Loh, K. P.; Sow, C. H. Improved photoelectrical properties of MoS2 films after laser micromachining. ACS Nano 2014, 8, 6334–6343.CrossRefGoogle Scholar
  8. [8]
    Lu, J. P.; Carvalho, A.; Chan, X. K.; Liu, H. W.; Liu, B.; Tok, E. S.; Loh, K. P.; Castro Neto, A. H.; Sow, C. H. Atomic healing of defects in transition metal dichalcogenides. Nano Lett. 2015, 15, 3524–3532.CrossRefGoogle Scholar
  9. [9]
    Kim, E.; Ko, C.; Kim, K.; Chen, Y. B.; Suh, J.; Ryu, S. G.; Wu, K. D.; Meng, X. Q.; Suslu, A.; Tongay, S. et al. Site selective doping of ultrathin metal dichalcogenides by laserassisted reaction. Adv. Mater. 2016, 28, 341–346.CrossRefGoogle Scholar
  10. [10]
    Lin, J. D.; Li, H.; Zhang, H.; Chen, W. Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Appl. Phys. Lett. 2013, 102, 203109.CrossRefGoogle Scholar
  11. [11]
    Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.CrossRefGoogle Scholar
  12. [12]
    Zhao, W. J.; Wang, S. F.; Liu, B.; Verzhbitskiy, I.; Li, S. S.; Giustiniano, F.; Kozawa, D.; Loh, K. P.; Matsuda, K.; Okamoto, K. et al. Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles. Adv. Mater. 2016, 28, 2709–2715.CrossRefGoogle Scholar
  13. [13]
    Najmaei, S.; Mlayah, A.; Arbouet, A.; Girard, C.; Léotin, J.; Lou, J. Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures. ACS Nano 2014, 8, 12682–12689.CrossRefGoogle Scholar
  14. [14]
    Sobhani, A.; Lauchner, A.; Najmaei, S.; Ayala-Orozco, C.; Wen, F. F.; Lou, J.; Halas, N. J. Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl. Phys. Lett. 2014, 104, 031112.CrossRefGoogle Scholar
  15. [15]
    Li, Z. W.; Xiao, Y. D.; Gong, Y. J.; Wang, Z. P.; Kang, Y. M.; Zu, S.; Ajayan, P. M.; Nordlander, P.; Fang, Z. Y. Active light control of the MoS2 monolayer exciton binding energy. ACS Nano 2015, 9, 10158–10164.CrossRefGoogle Scholar
  16. [16]
    Li, Y.; Cain, J. D.; Hanson, E. D.; Murthy, A. A.; Hao, S. Q.; Shi, F. Y.; Li, Q. Q.; Wolverton, C.; Chen, X. Q.; Dravid, V. P. Au@ MoS2 core-shell heterostructures with strong light-matter interactions. Nano Lett. 2016, 16, 7696–7702.CrossRefGoogle Scholar
  17. [17]
    Sreeprasad, T. S.; Nguyen, P.; Kim, N.; Berry, V. Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: Electrical, thermal, and structural properties. Nano Lett. 2013, 13, 4434–4441.CrossRefGoogle Scholar
  18. [18]
    Choi, M. S.; Qu, D. S.; Lee, D.; Liu, X. C.; Watanabe, K.; Taniguchi, T.; Yoo, W. J. Lateral MoS2 p–n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano 2014, 8, 9332–9340.CrossRefGoogle Scholar
  19. [19]
    Sarkar, D.; Xie, X. J.; Kang, J. H.; Zhang, H. J.; Liu, W.; Navarrete, J.; Moskovits, M.; Banerjee, K. Functionalization of transition metal dichalcogenides with metallic nanoparticles: Implications for doping and gas-sensing. Nano Lett. 2015, 15, 2852–2862.CrossRefGoogle Scholar
  20. [20]
    Li, X. H.; Zhu, J. M.; Wei, B. Q. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem. Soc. Rev. 2016, 45, 3145–3187.CrossRefGoogle Scholar
  21. [21]
    Shi, Y. M.; Huang, J. K.; Jin, L. M.; Hsu, Y. T.; Yu, S. F.; Li, L. J.; Yang, H. Y. Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Sci. Rep. 2013, 3, 1839.CrossRefGoogle Scholar
  22. [22]
    Lu, J. P.; Lu, J. H.; Liu, H. W.; Liu, B.; Gong, L. L.; Tok, E. S.; Loh, K. P.; Sow, C. H. Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing. Small 2015, 11, 1792–1800.CrossRefGoogle Scholar
  23. [23]
    Liu, Y. L.; Nan, H. Y.; Wu, X.; Pan, W.; Wang, W. H.; Bai, J.; Zhao, W. W.; Sun, L. T.; Wang, X. R.; Ni, Z. H. Layer-by-layer thinning of MoS2 by plasma. ACS Nano 2013, 7, 4202–4209.CrossRefGoogle Scholar
  24. [24]
    Amara, K. K.; Chu, L. Q.; Kumar, R.; Toh, M.; Eda, G. Wet chemical thinning of molybdenum disulfide down to its monolayer. APL Mater. 2014, 2, 092509.CrossRefGoogle Scholar
  25. [25]
    Ionescu, R.; George, A.; Ruiz, I.; Favors, Z.; Mutlu, Z.; Liu, C.; Ahmed, K.; Wu, R.; Jeong, J. S.; Zavala, L. et al. Oxygen etching of thick MoS2 films. Chem. Commun. 2014, 50, 11226–11229.CrossRefGoogle Scholar
  26. [26]
    Sunamura, K.; Page, T. R.; Yoshida, K.; Yano, T.; Hayamizu, Y. Laser-induced electrochemical thinning of MoS2. J. Mater. Chem. C 2016, 4, 3268–3273.CrossRefGoogle Scholar
  27. [27]
    Lu, X.; Utama, M. I. B.; Zhang, J.; Zhao, Y. Y.; Xiong, Q. H. Layer-by-layer thinning of MoS2 by thermal annealing. Nanoscale 2013, 5, 8904–8908.CrossRefGoogle Scholar
  28. [28]
    Wang, D.; Wang, Y. Q.; Chen, X. D.; Zhu, Y. K.; Zhan, K.; Cheng, H. B.; Wang, X. Y. Layer-by-layer thinning of two-dimensional MoS2 films by using a focused ion beam. Nanoscale 2016, 8, 4107–4112.CrossRefGoogle Scholar
  29. [29]
    Su, W. T.; Kumar, N.; Spencer, S. J.; Dai, N.; Roy, D. Transforming bilayer MoS2 into single-layer with strong photoluminescence using UV-ozone oxidation. Nano Res. 2015, 8, 3878–3886.CrossRefGoogle Scholar
  30. [30]
    Li, H.; Wu, J.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Xiong, Q. H.; Zhang, H. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 2013, 7, 10344–10353.CrossRefGoogle Scholar
  31. [31]
    Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single-and fewlayer MoS2. ACS Nano 2010, 4, 2695–2700.CrossRefGoogle Scholar
  32. [32]
    Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.CrossRefGoogle Scholar
  33. [33]
    Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.CrossRefGoogle Scholar
  34. [34]
    Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738–5745.CrossRefGoogle Scholar
  35. [35]
    Lee, H. S.; Kim, M. S.; Kim, H.; Lee, Y. H. Identifying multiexcitons in MoS2 monolayers at room temperature. Phys. Rev. B 2016, 93, 140409.CrossRefGoogle Scholar
  36. [36]
    Gwo, S.; Chen, H. Y.; Lin, M. H.; Sun, L. Y.; Li, X. Q. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics. Chem. Soc. Rev. 2016, 45, 5672–5716.CrossRefGoogle Scholar
  37. [37]
    Kim, S. M.; Kim, K. K.; Jo, Y. W.; Park, M. H.; Chae, S. J.; Duong, D. L.; Yang, C. W.; Kong, J.; Lee, Y. H. Role of anions in the AuCl3-doping of carbon nanotubes. ACS Nano 2011, 5, 1236–1242.CrossRefGoogle Scholar
  38. [38]
    Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275–6280.CrossRefGoogle Scholar
  39. [39]
    Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons. Sci. Rep. 2013, 3, 2657.CrossRefGoogle Scholar
  40. [40]
    Oh, H. M.; Han, G. H.; Kim, H.; Bae, J. J.; Jeong, M. S.; Lee, Y. H. Photochemical reaction in monolayer MoS2 via correlated photoluminescence, raman spectroscopy, and atomic force microscopy. ACS Nano 2016, 10, 5230–5236.CrossRefGoogle Scholar
  41. [41]
    Sie, E. J.; Frenzel, A. J.; Lee, Y. H.; Kong, J.; Gedik, N. Intervalley biexcitons and many-body effects in monolayer MoS2. Phys. Rev. B 2015, 92, 125417.CrossRefGoogle Scholar
  42. [42]
    Mai, C.; Barrette, A.; Yu, Y. F.; Semenov, Y. G.; Kim, K. W.; Cao, L. Y.; Gundogdu, K. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 2014, 14, 202–206.CrossRefGoogle Scholar
  43. [43]
    Kümmell, T.; Quitsch, W.; Matthis, S.; Litwin, T.; Bacher, G. Gate control of carrier distribution in k-space in MoS2 monolayer and bilayer crystals. Phys. Rev. B 2015, 91, 125305.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lili Gong
    • 1
  • Qi Zhang
    • 1
  • Liangjun Wang
    • 1
  • Jianfeng Wu
    • 1
  • Cheng Han
    • 1
  • Bo Lei
    • 1
  • Wei Chen
    • 1
    • 2
    • 3
  • Goki Eda
    • 1
    • 2
    • 3
  • Kuan Eng Johnson Goh
    • 4
    • 1
  • Chorng Haur Sow
    • 1
    • 3
    Email author
  1. 1.Department of PhysicsNational University of SingaporeSingaporeSingapore
  2. 2.Department of ChemistryNational University of SingaporeSingaporeSingapore
  3. 3.Centre for Advanced 2D Materials and Graphene Research CentreNational University of SingaporeSingaporeSingapore
  4. 4.Institute of Materials Research and EngineeringAgency for Science, Technology and Research (A*STAR)SingaporeSingapore

Personalised recommendations