Advertisement

Nano Research

, Volume 11, Issue 9, pp 4549–4561 | Cite as

DNA-encoded morphological evolution of bimetallic Pd@Au core-shell nanoparticles from a high-indexed core

  • Nitya Sai Reddy Satyavolu
  • Nikou Pishevaresfahani
  • Li Huey Tan
  • Yi Lu
Research Article
  • 188 Downloads

Abstract

DNA-mediated synthesis of nanoparticles is a powerful method to access exclusive shapes and surface properties. Previous studies employed seeds containing low-energy facets, such as a simple cubic palladium seed, in the synthesis of Pd-Au bimetallic nanoparticles; however, few studies have investigated whether DNA molecules are influential when a seed containing high-energy facets is used. Seeds enclosed by high-energy facets act as facile nucleation sites in nanoparticle growth and could suppress the effect of DNA. We report the DNA-encoded control of the morphological evolution of bimetallic Pd@Au core-shell nanoparticles from a concave palladium nanocube seed containing high-indexed facets. Based on detailed spectroscopic and microscopic studies of time-dependent growth of bimetallic nanoparticles, we found that the DNA molecules containing 10 repeating units of thymine, guanine, cytosine, or adenine (referred to as T10, G10, C10, and A10, respectively) show a unique interaction with the surface of the seed and the precursor. The most important factor is the binding affinity of the nucleobase to the Pd surface; A10 shows the highest binding affinity and can stabilize the high energy surfaces of the seed. Initially, the growth of bases with lower binding affinities (T10, G10, and C10) is completely dictated by the seed’s surface energy, but later growth can be influenced by different DNA sequences, providing four Pd@Au bimetallic nanoparticles with unique morphologies. The effect of these DNA molecules with medium or low binding affinities can only be observed when more Au is deposited. We propose a scheme for DNA-controlled growth. These results provide insights into the factors governing the DNA-mediated growth of core-shell structures using seeds with high-energy sites, and the insights can be readily applied to other bimetallic systems.

Keywords

concave seed DNA shape-control Pd@Au core-shell nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We wish to thank the U.S. National Institutes of Health (Nos. GM124316 and MH110975) for financial support. N. S. R. S. would like to thank the Beckman Graduate Fellowship for financial support. The authors thank Prof. Hong Yang, Prof. Kenneth S. Suslick, and Prof. Catherine J. Murphy for their insightful discussions. SEM, TEM, and STEM were carried out at the Federick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. The authors also thank Dr. Moitree Laskar for suggestions in a synthetic protocol, Dianwen Zhang for help with the confocal Raman microscopy, Kapil Dave for CD measurements, Kevin Harnden for help with data analysis and Vishwas Srivastava for help with HR-TEM and helpful discussions.

Supplementary material

12274_2018_2035_MOESM1_ESM.pdf (4.3 mb)
DNA-encoded morphological evolution of bimetallic Pd@Au core-shell nanoparticles from a high-indexed core

References

  1. [1]
    Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.CrossRefGoogle Scholar
  2. [2]
    Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.CrossRefGoogle Scholar
  3. [3]
    Tan, L. H.; Xing, H.; Lu, Y. DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles. Acc. Chem. Res. 2014, 47, 1881–1890.CrossRefGoogle Scholar
  4. [4]
    Xia, Y. N.; Xia, X. H.; Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966.CrossRefGoogle Scholar
  5. [5]
    Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.CrossRefGoogle Scholar
  6. [6]
    Hutter, E.; Fendler, J. H. Exploitation of localized surface plasmon resonance. Adv. Mater. 2004, 16, 1685–1706.CrossRefGoogle Scholar
  7. [7]
    Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.CrossRefGoogle Scholar
  8. [8]
    Lal, S.; Link, S.; Halas, N. J. Nano-optics from sensing to waveguiding. Nat. Photonics 2007, 1, 641–648.CrossRefGoogle Scholar
  9. [9]
    Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.CrossRefGoogle Scholar
  10. [10]
    Liu, J. B.; Duchesne, P. N.; Yu, M. X.; Jiang, X. Y.; Ning, X. H.; Vinluan, R. D.; Zhang, P.; Zheng, J. Luminescent gold nanoparticles with size-independent emission. Angew. Chem., Int. Ed. 2016, 55, 8894–8898.CrossRefGoogle Scholar
  11. [11]
    Narayanan, R.; El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 2005, 109, 12663–12676.CrossRefGoogle Scholar
  12. [12]
    Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem., Int. Ed. 2005, 44, 7852–7872.CrossRefGoogle Scholar
  13. [13]
    Wei, H.; Lu, Y. Catalysis of gold nanoparticles within lysozyme single crystals. Chem.–Asian J. 2012, 7, 680–683.CrossRefGoogle Scholar
  14. [14]
    Mahmoud, M. A.; Narayanan, R.; El-Sayed, M. A. Enhancing colloidal metallic nanocatalysis: Sharp edges and corners for solid nanoparticles and cage effect for hollow ones. Acc. Chem. Res. 2013, 46, 1795–1805.CrossRefGoogle Scholar
  15. [15]
    Qian, K.; Sweeny, B. C.; Johnston-Peck, A. C.; Niu, W. X.; Graham, J. O.; DuChene, J. S.; Qiu, J. J.; Wang, Y. C.; Engelhard, M. H.; Su, D. et al. Surface plasmon-driven water reduction: Gold nanoparticle size matters. J. Am. Chem. Soc. 2014, 136, 9842–9845.CrossRefGoogle Scholar
  16. [16]
    Wei, D. W.; Sweeny, C. B.; Qiu, J. J.; DuChene, S. J. Metallic nanostructures for catalytic applications. In Metallic Nanostructures: From Controlled Synthesis to Applications. Xiong, Y.; Lu, X., Eds.; Springer International Publishing: Cham, 2015; pp 243–269.Google Scholar
  17. [17]
    Liu, J. W.; Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 2003, 125, 6642–6643.CrossRefGoogle Scholar
  18. [18]
    Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.CrossRefGoogle Scholar
  19. [19]
    Lu, Y.; Liu, J. W. Functional DNA nanotechnology: Emerging applications of DNAzymes and aptamers. Curr. Opin. Biotechnol. 2006, 17, 580–588.CrossRefGoogle Scholar
  20. [20]
    Liu, J. W.; Mazumdar, D.; Lu, Y. A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew. Chem., Int. Ed. 2006, 45, 7955–7959.CrossRefGoogle Scholar
  21. [21]
    Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225.CrossRefGoogle Scholar
  22. [22]
    Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120.CrossRefGoogle Scholar
  23. [23]
    Wu, P. W.; Hwang, K.; Lan, T.; Lu, Y. A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J. Am. Chem. Soc. 2013, 135, 5254–5257.CrossRefGoogle Scholar
  24. [24]
    Zhang, J. J.; Cheng, F. F.; Li, J. J.; Zhu, J. J.; Lu, Y. Fluorescent nanoprobes for sensing and imaging of metal ions: Recent advances and future perspectives. Nano Today 2016, 11, 309–329.CrossRefGoogle Scholar
  25. [25]
    Smith, B. R.; Gambhir, S. S. Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117, 901–986.CrossRefGoogle Scholar
  26. [26]
    Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248.CrossRefGoogle Scholar
  27. [27]
    Lu, Y.; Liu, J. W. Smart nanomaterials inspired by biology: Dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Acc. Chem. Res. 2007, 40, 315–323.CrossRefGoogle Scholar
  28. [28]
    Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578–1586.CrossRefGoogle Scholar
  29. [29]
    Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.CrossRefGoogle Scholar
  30. [30]
    Xing, H.; Hwang, K.; Li, J.; Torabi, S. F.; Lu, Y. DNA aptamer technology for personalized medicine. Curr. Opin. Chem. Eng. 2014, 4, 79–87.CrossRefGoogle Scholar
  31. [31]
    Tao, Y.; Li, M. Q.; Ren, J. S.; Qu, X. G. Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 2015, 44, 8636–8663.CrossRefGoogle Scholar
  32. [32]
    Yu, M. X.; Zheng, J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 2015, 9, 6655–6674.CrossRefGoogle Scholar
  33. [33]
    Wang, W. J.; Satyavolu, N. S. R.; Wu, Z. K.; Zhang, J. R.; Zhu, J. J.; Lu, Y. Near-infrared photothermally activated DNAzyme–gold nanoshells for imaging metal ions in living cells. Angew. Chem., Int. Ed. 2017, 56, 6798–6802.CrossRefGoogle Scholar
  34. [34]
    DuChene, J. S.; Niu, W. X.; Abendroth, J. M.; Sun, Q.; Zhao, W. B.; Huo, F. W.; Wei, W. D. Halide anions as shape-directing agents for obtaining high-quality anisotropic gold nanostructures. Chem. Mater. 2013, 25, 1392–1399.CrossRefGoogle Scholar
  35. [35]
    Ortiz, N.; Skrabalak, S. E. On the dual roles of ligands in the synthesis of colloidal metal nanostructures. Langmuir 2014, 30, 6649–6659.CrossRefGoogle Scholar
  36. [36]
    Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609.CrossRefGoogle Scholar
  37. [37]
    Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H. Structural DNA nanotechnology: State of the art and future perspective. J. Am. Chem. Soc. 2014, 136, 11198–11211.CrossRefGoogle Scholar
  38. [38]
    Torabi, S. F.; Lu, Y. Functional DNA nanomaterials for sensing and imaging in living cells. Curr. Opin. Biotechnol. 2014, 28, 88–95.CrossRefGoogle Scholar
  39. [39]
    Li, Y. L.; Liu, Z. Y.; Yu, G. M.; Jiang, W.; Mao, C. D. Self-assembly of molecule-like nanoparticle clusters directed by DNA nanocages. J. Am. Chem. Soc. 2015, 137, 4320–4323.CrossRefGoogle Scholar
  40. [40]
    Liu, Z. Y.; Tian, C.; Yu, J. W.; Li, Y. L.; Jiang, W.; Mao, C. D. Self-assembly of responsive multilayered DNA nanocages. J. Am. Chem. Soc. 2015, 137, 1730–1733.CrossRefGoogle Scholar
  41. [41]
    Veneziano, R.; Ratanalert, S.; Zhang, K. M.; Zhang, F.; Yan, H.; Chiu, W.; Bathe, M. Designer nanoscale DNA assemblies programmed from the top down. Science 2016, 352, 1534–1534.CrossRefGoogle Scholar
  42. [42]
    Wu, X. L.; Xu, L. G.; Ma, W.; Liu, L. Q.; Kuang, H.; Kotov, N. A.; Xu, C. L. Propeller-like nanorod-upconversion nanoparticle assemblies with intense chiroptical activity and luminescence enhancement in aqueous phase. Adv. Mater. 2016, 28, 5907–5915.CrossRefGoogle Scholar
  43. [43]
    Wang, Z. D.; Zhang, J. Q.; Ekman, J. M.; Kenis, P. J. A.; Lu, Y. DNA-mediated control of metal nanoparticle shape: One-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers. Nano Lett. 2010, 10, 1886–1891.CrossRefGoogle Scholar
  44. [44]
    Wang, Z. D.; Tang, L. H.; Tan, L. H.; Li, J. H.; Lu, Y. Discovery of the DNA “genetic code” for abiological gold nanoparticle morphologies. Angew. Chem., Int. Ed. 2012, 51, 9078–9082.CrossRefGoogle Scholar
  45. [45]
    Wu, J. J. X.; Tan, L. H.; Hwang, K.; Xing, H.; Wu, P. W.; Li, W.; Lu, Y. DNA sequence-dependent morphological evolution of silver nanoparticles and their optical and hybridization properties. J. Am. Chem. Soc. 2014, 136, 15195–15202.CrossRefGoogle Scholar
  46. [46]
    Song, T. J.; Tang, L. H.; Tan, L. H.; Wang, X. J.; Satyavolu, N. S. R.; Xing, H.; Wang, Z. D.; Li, J. H.; Liang, H. J.; Lu, Y. DNA-encoded tuning of geometric and plasmonic properties of nanoparticles growing from gold nanorod seeds. Angew. Chem., Int. Ed. 2015, 54, 8114–8118.CrossRefGoogle Scholar
  47. [47]
    Tan, L. H.; Yue, Y.; Satyavolu, N. S. R.; Ali, A. S.; Wang, Z. D.; Wu, Y. Q.; Lu, Y. Mechanistic insight into DNA-guided control of nanoparticle morphologies. J. Am. Chem. Soc. 2015, 137, 14456–14464.CrossRefGoogle Scholar
  48. [48]
    Satyavolu, N. S. R.; Tan, L. H.; Lu, Y. DNA-mediated morphological control of Pd–Au bimetallic nanoparticles. J. Am. Chem. Soc. 2016, 138, 16542–16548.CrossRefGoogle Scholar
  49. [49]
    Li, J. X.; Zhu, Z.; Liu, F.; Zhu, B. Q.; Ma, Y. L.; Yan, J. M.; Lin, B. Q.; Ke, G. L.; Liu, R. D.; Zhou, L. J. et al. DNA-mediated morphological control of silver nanoparticles. Small 2016, 12, 5449–5487.CrossRefGoogle Scholar
  50. [50]
    Laskar, M.; Skrabalak, S. E. Decoupling the geometric parameters of shape-controlled Pd nanocatalysts. ACS Catal. 2014, 4, 1120–1128.CrossRefGoogle Scholar
  51. [51]
    Niu, W. X.; Zhang, W. Q.; Firdoz, S.; Lu, X. M. Controlled synthesis of palladium concave nanocubes with sub-10-nanometer edges and corners for tunable plasmonic property. Chem. Mater. 2014, 26, 2180–2186.CrossRefGoogle Scholar
  52. [52]
    Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angew. Chem., Int. Ed. 2011, 50, 7850–7854.CrossRefGoogle Scholar
  53. [53]
    Yu, Y.; Zhang, Q. B.; Xie, J. P.; Lee, J. Y. Engineering the architectural diversity of heterogeneous metallic nanocrystals. Nat. Commun. 2013, 4, 1454.CrossRefGoogle Scholar
  54. [54]
    Sabir, T. S.; Yan, D.; Milligan, J. R.; Aruni, A. W.; Nick, K. E.; Ramon, R. H.; Hughes, J. A.; Chen, Q.; Kurti, R. S.; Perry, C. C. Kinetics of gold nanoparticle formation facilitated by triblock copolymers. J. Phys. Chem. C 2012, 116, 4431–4441.CrossRefGoogle Scholar
  55. [55]
    Han, L.; Maye, M. M.; Leibowitz, F. L.; Ly, N. K.; Zhong, C.-J. Quartz-crystal microbalance and spectrophotometric assessments of inter-core and inter-shell reactivities in nanoparticle thin film formation and growth. J. Mater. Chem. 2001, 11, 1258–1264.CrossRefGoogle Scholar
  56. [56]
    Richards, V. N.; Rath, N. P.; Buhro, W. E. Pathway from a molecular precursor to silver nanoparticles: The prominent role of aggregative growth. Chem. Mater. 2010, 22, 3556–3567.CrossRefGoogle Scholar
  57. [57]
    Njoki, P. N.; Luo, J.; Kamundi, M. M.; Lim, S.; Zhong, C. J. Aggregative growth in the size-controlled growth of monodispersed gold nanoparticles. Langmuir 2010, 26, 13622–13629.CrossRefGoogle Scholar
  58. [58]
    Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630.CrossRefGoogle Scholar
  59. [59]
    Harada, M.; Kizaki, S. Formation mechanism of gold nanoparticles synthesized by photoreduction in aqueous ethanol solutions of polymers using in situ quick scanning X-ray absorption fine structure and small-angle X-ray scattering. Cryst. Growth Des. 2016, 16, 1200–1212.CrossRefGoogle Scholar
  60. [60]
    Zhao, L. L.; Ji, X. H.; Sun, X. J.; Li, J.; Yang, W. S.; Peng, X. G. Formation and stability of gold nanoflowers by the seeding approach: The effect of intraparticle ripening. J. Phys. Chem. C 2009, 113, 16645–16651.CrossRefGoogle Scholar
  61. [61]
    Cao, G. Z. Characterization and properties of nanomaterials. In Nanostructures and Nanomaterials: Synthesis, Properties and Application. Cao, G. Z., Ed.; World Scientific: London, 2011; pp 433–508.CrossRefGoogle Scholar
  62. [62]
    Chen, A. N.; Scanlan, M. M.; Skrabalak, S. E. Surface passivation and supersaturation: Strategies for regioselective deposition in seeded syntheses. ACS Nano 2017, 11, 12624–12631.CrossRefGoogle Scholar
  63. [63]
    Xia, X. H.; Xie, S. F.; Liu, M. C.; Peng, H. C.; Lu, N.; Wang, J. G.; Kim, M. J.; Xia, Y. N. On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals. Proc. Natl. Acad. Sci. USA 2013, 110, 6669–6673.CrossRefGoogle Scholar
  64. [64]
    Liu, J. W. Adsorption of DNA onto gold nanoparticles and graphene oxide: Surface science and applications. Phys. Chem. Chem. Phys. 2012, 14, 10485–10496.CrossRefGoogle Scholar
  65. [65]
    Sanchez-Gaytan, B. L.; Qian, Z. X.; Hastings, S. P.; Reca, M. L.; Fakhraai, Z.; Park, S. J. Controlling the topography and surface plasmon resonance of gold nanoshells by a templated surfactant-assisted seed growth method. J. Phys. Chem. C 2013, 117, 8916–8923.CrossRefGoogle Scholar
  66. [66]
    Quan, Z. W.; Wang, Y. X.; Fang, J. Y. High-index faceted noble metal nanocrystals. Acc. Chem. Res. 2013, 46, 191–202.CrossRefGoogle Scholar
  67. [67]
    Kimura-Suda, H.; Petrovykh, D. Y.; Tarlov, M. J.; Whitman, L. J. Base-dependent competitive adsorption of single-stranded DNA on gold. J. Am. Chem. Soc. 2003, 125, 9014–9015.CrossRefGoogle Scholar
  68. [68]
    DeSantis, C. J.; Skrabalak, S. E. Core values: Elucidating the role of seed structure in the synthesis of symmetrically branched nanocrystals. J. Am. Chem. Soc. 2013, 135, 10–13.CrossRefGoogle Scholar
  69. [69]
    Weiner, R. G.; DeSantis, C. J.; Cardoso, M. B. T.; Skrabalak, S. E. Diffusion and seed shape: Intertwined parameters in the synthesis of branched metal nanostructures. ACS Nano 2014, 8, 8625–8635.CrossRefGoogle Scholar
  70. [70]
    Xia, Y. N.; Gilroy, K. D.; Peng, H. C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 60–95.CrossRefGoogle Scholar
  71. [71]
    Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. D. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.CrossRefGoogle Scholar
  72. [72]
    Yu, Y.; Zhang, Q. B.; Liu, B.; Lee, J. Y. Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial growth of trisoctahedral Au templates. J. Am. Chem. Soc. 2010, 132, 18258–18265.CrossRefGoogle Scholar
  73. [73]
    Wang, F.; Li, C. H.; Sun, L.-D.; Wu, H. S.; Ming, T.; Wang, J. F.; Yu, J. C.; Yan, C.-H. Heteroepitaxial growth of high-index-faceted palladium nanoshells and their catalytic performance. J. Am. Chem. Soc. 2011, 133, 1106–1111.CrossRefGoogle Scholar
  74. [74]
    Jin, H.; Lee, K. W.; Khi, N. T.; An, H.; Park, J.; Baik, H.; Kim, J.; Yang, H.; Lee, K. Rational synthesis of heterostructured M/Pt (M = Ru or Rh) octahedral nanoboxes and octapods and their structure-dependent electrochemical activity toward the oxygen evolution reaction. Small 2015, 11, 4462–4468.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nitya Sai Reddy Satyavolu
    • 1
  • Nikou Pishevaresfahani
    • 1
  • Li Huey Tan
    • 1
  • Yi Lu
    • 1
  1. 1.Department of Chemistry, Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations