Advertisement

Nano Research

, Volume 11, Issue 6, pp 3031–3049 | Cite as

Exciton dissociation dynamics and light-driven H2 generation in colloidal 2D cadmium chalcogenide nanoplatelet heterostructures

  • Qiuyang Li
  • Tianquan Lian
Review Article
  • 277 Downloads

Abstract

Solar-to-H2 conversion is attracting much research attention as a potential approach to meet global renewable energy demands. Although significant advances have been made using metal-tipped colloidal cadmium chalcogenide zero-dimensional (0D) quantum dots and one-dimensional (1D) nanorod heterostructures in solar-to-H2 conversion, their efficiency may be further enhanced using an emerging class of colloidal cadmium chalcogenide nanocrystals, namely two-dimensional (2D) nanoplatelets (NPLs), because of their unique properties. In this review, we summarize the recent advances on exciton dissociation dynamics and light-driven H2 generation performance of colloidal nanoplatelet heterostructures. Following an introduction on the electronic structure of 2D NPLs, we discuss the dynamics of exciton dissociation by electron transfer to molecular acceptors. The exciton quenching dynamics of CdS NPL-Pt and CdSe NPL-Pt heterostructures are compared to highlight the effect of material properties on the relative contributions of the energy-transfer and electron-transfer pathways. Representative solar-to-H2 conversion performances of 2D NPL-metal heterostructures are discussed and compared with those of 1D nanorod-metal heterostructures. Finally, we discuss the challenges in further improving the solar-to-fuel conversion efficiencies of these systems.

Keywords

colloidal nanoplatelets semiconductor-metal heterostructures exciton dissociation electron transfer hydrogen generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Solar Photochemistry Program under Award Number (No. DE-FG02-12ER16347).

References

  1. [1]
    Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.Google Scholar
  2. [2]
    Hoffert, M. I.; Caldeira, K.; Benford, G.; Criswell, D. R.; Green, C.; Herzog, H.; Jain, A. K.; Kheshgi, H. S.; Lackner, K. S.; Lewis, J. S. et al. Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science 2002, 298, 981–987.Google Scholar
  3. [3]
    Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805–809.Google Scholar
  4. [4]
    Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M. et al. Basic Research Needs for Solar Energy Utilization: Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18–21, 2005; U.S. Department of Energy, Office of Basic Energy Science: Washington, DC, 2015.Google Scholar
  5. [5]
    Meyer, T. J. Chemical approaches to artificial photosynthesis. Acc. Chem. Res. 1989, 22, 163–170.Google Scholar
  6. [6]
    Chen, X. B.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909–7937.Google Scholar
  7. [7]
    Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7.Google Scholar
  8. [8]
    Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.Google Scholar
  9. [9]
    Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.Google Scholar
  10. [10]
    Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.Google Scholar
  11. [11]
    Zhu, H. M.; Lian, T. Q. Wavefunction engineering in quantum confined semiconductor nanoheterostructures for efficient charge separation and solar energy conversion. Energy Environ. Sci. 2012, 5, 9406–9418.Google Scholar
  12. [12]
    Wu, K. F.; Zhu, H. M.; Lian, T. Q. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Acc. Chem. Res. 2015, 48, 851–859.Google Scholar
  13. [13]
    Wu, K. F.; Lian, T. Q. Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion. Chem. Soc. Rev. 2016, 45, 3781–3810.Google Scholar
  14. [14]
    Xie, G. C.; Zhang, K.; Guo, B. D.; Liu, Q.; Fang, L.; Gong, J. R. Graphene-based materials for hydrogen generation from light-driven water splitting. Adv. Mater. 2013, 25, 3820–3839.Google Scholar
  15. [15]
    Li, Q.; Meng, H.; Zhou, P.; Zheng, Y. Q.; Wang, J.; Yu, J. G.; Gong, J. R. Zn1–xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catal. 2013, 3, 882–889.Google Scholar
  16. [16]
    Zhang, J.; Yu, J. G.; Jaroniec, M.; Gong, J. R. Noble metalfree reduced graphene oxide-ZnxCd1–xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett. 2012, 12, 4584–4589.Google Scholar
  17. [17]
    Zhang, J.; Yu, J. G.; Zhang, Y. M.; Li, Q.; Gong, J. R. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 2011, 11, 4774–4779.Google Scholar
  18. [18]
    Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878–10884.Google Scholar
  19. [19]
    Zhang, K.; Dai, Y. W.; Zhou, Z. H.; Ullah Jan, S.; Guo, L. J.; Gong, J. R. Polarization-induced saw-tooth-like potential distribution in zincblende-wurtzite superlattice for efficient charge separation. Nano Energy 2017, 41, 101–108.Google Scholar
  20. [20]
    Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.Google Scholar
  21. [21]
    Brus, L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79, 5566–5571.Google Scholar
  22. [22]
    Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.Google Scholar
  23. [23]
    Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.Google Scholar
  24. [24]
    Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mat. 2003, 15, 2854–2860.Google Scholar
  25. [25]
    Jasieniak, J.; Smith, L.; van Embden, J.; Mulvaney, P.; Califano, M. Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 2009, 113, 19468–19474.Google Scholar
  26. [26]
    Klimov, V. I.; Mikhailovsky, A. A.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 2000, 287, 1011–1013.Google Scholar
  27. [27]
    Schaller, R. D.; Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601.Google Scholar
  28. [28]
    Schaller, R. D.; Sykora, M.; Pietryga, J. M.; Klimov, V. I. Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett. 2006, 6, 424–429.Google Scholar
  29. [29]
    Klimov, V. I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 2007, 58, 635–673.Google Scholar
  30. [30]
    Mcguire, J. A.; Joo, J.; Pietryga, J. M.; Schaller, R. D.; Klimov, V. I. New aspects of carrier multiplication in semiconductor nanocrystals. Acc. Chem. Res. 2008, 41, 1810–1819.Google Scholar
  31. [31]
    Cirloganu, C. M.; Padilha, L. A.; Lin, Q. L.; Makarov, N. S.; Velizhanin, K. A.; Luo, H. M.; Robel, I.; Pietryga, J. M.; Klimov, V. I. Enhanced carrier multiplication in engineered quasi-type-II quantum dots. Nat. Commun. 2014, 5, 4148.Google Scholar
  32. [32]
    Klimov, V. I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication. Ann. Rev. Condens. Matter Phys. 2014, 5, 285–316.Google Scholar
  33. [33]
    Padilha, L. A.; Stewart, J. T.; Sandberg, R. L.; Bae, W. K.; Koh, W.-K.; Pietryga, J. M.; Klimov, V. I. Aspect ratio dependence of Auger recombination and carrier multiplication in PbSe nanorods. Nano Lett. 2013, 13, 1092–1099.Google Scholar
  34. [34]
    Zhu, H. M.; Yang, Y.; Lian, T. Q. Multiexciton annihilation and dissociation in quantum confined semiconductor nanocrystals. Acc. Chem. Res. 2013, 46, 1270–1279.Google Scholar
  35. [35]
    Zhu, H. M.; Song, N. H.; Rodríguez-Córdoba, W.; Lian, T. Q. Wave function engineering for efficient extraction of up to nineteen electrons from one CdSe/CdS quasi-type II quantum dot. J. Am. Chem. Soc. 2012, 134, 4250–4257.Google Scholar
  36. [36]
    Zhu, H. M.; Lian, T. Q. Enhanced multiple exciton dissociation from CdSe quantum rods: The effect of nanocrystal shape. J. Am. Chem. Soc. 2012, 134, 11289–11297.Google Scholar
  37. [37]
    Jin, S. Y.; Lian, T. Q. Electron transfer dynamics of single quantum dots on the (110) surface of a rutile TiO2 single crystal. Sci. China Chem. 2011, 54, 1898–1902.Google Scholar
  38. [38]
    Song, N. H.; Zhu, H. M.; Jin, S. Y.; Lian, T. Q. Hole transfer from single quantum dots. ACS Nano 2011, 5, 8750–8759.Google Scholar
  39. [39]
    Yang, Y.; Rodríguez-Córdoba, W.; Lian, T. Q. Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot-methylene blue complexes probed by electron and hole intraband transitions. J. Am. Chem. Soc. 2011, 133, 9246–9249.Google Scholar
  40. [40]
    Zhu, H. M.; Song, N. H.; Lian, T. Q. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots. J. Am. Chem. Soc. 2011, 133, 8762–8771.Google Scholar
  41. [41]
    Yang, Y.; Lian, T. Q. Efficient multiple exciton dissociation and hot electron extraction by ultrafast interfacial electron transfer from PbS QD. Coord. Chem. Rev. 2014, 263–264, 229–238.Google Scholar
  42. [42]
    Yang, Y.; Rodríguez-Córdoba, W.; Xiang, X.; Lian, T. Q. Strong electronic coupling and ultrafast electron transfer between PbS quantum dots and TiO2 nanocrystalline films. Nano Lett. 2012, 12, 303–309.Google Scholar
  43. [43]
    Yang, Y.; Liu, Z.; Lian, T. Q. Bulk transport and interfacial transfer dynamics of photogenerated carriers in CdSe quantum dot solid electrodes. Nano Lett. 2013, 13, 3678–3683.Google Scholar
  44. [44]
    Zhu, H. M.; Yang, Y.; Hyeon-Deuk, K.; Califano, M.; Song, N. H.; Wang, Y. W.; Zhang, W. Q.; Prezhdo, O. V.; Lian, T. Q. Auger-assisted electron transfer from photoexcited semiconductor quantum dots. Nano Lett. 2014, 14, 1263–1269.Google Scholar
  45. [45]
    Zhu, H. M.; Song, N. H.; Lian, T. Q. Controlling charge separation and recombination rates in CdSe/ZnS type I core-shell quantum dots by shell thicknesses. J. Am. Chem. Soc. 2010, 132, 15038–15045.Google Scholar
  46. [46]
    Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J. B.; Wang, L.-W.; Paul Alivisatos, A. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 2004, 430, 190–195.Google Scholar
  47. [47]
    Li, H. B.; Kanaras, A. G.; Manna, L. Colloidal branched semiconductor nanocrystals: State of the art and perspectives. Acc. Chem. Res. 2013, 46, 1387–1396.Google Scholar
  48. [48]
    Shieh, F.; Saunders, A. E.; Korgel, B. A. General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J. Phys. Chem. B 2005, 109, 8538–8542.Google Scholar
  49. [49]
    Li, L.-S.; Hu, J. T.; Yang, W. D.; Alivisatos, A. P. Band gap variation of size-and shape-controlled colloidal CdSe quantum rods. Nano Lett. 2001, 1, 349–351.Google Scholar
  50. [50]
    Wu, K. F.; Hill, L. J.; Chen, J. Q.; McBride, J. R.; Pavlopolous, N. G.; Richey, N. E.; Pyun, J.; Lian, T. Q. Universal length dependence of rod-to-seed exciton localization efficiency in type I and quasi-type II CdSe@CdS nanorods. ACS Nano 2015, 9, 4591–4599.Google Scholar
  51. [51]
    Habas, S. E.; Yang, P. D.; Mokari, T. Selective growth of metal and binary metal tips on CdS nanorods. J. Am. Chem. Soc. 2008, 130, 3294–3295.Google Scholar
  52. [52]
    Wu, K. F.; Zhu, H. M.; Liu, Z.; Rodríguez-Córdoba, W.; Lian, T. Q. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures. J. Am. Chem. Soc. 2012, 134, 10337–10340.Google Scholar
  53. [53]
    Acharya, K. P.; Khnayzer, R. S.; O’Connor, T.; Diederich, G.; Kirsanova, M.; Klinkova, A.; Roth, D.; Kinder, E.; Imboden, M.; Zamkov, M. The role of hole localization in sacrificial hydrogen production by semiconductor–metal heterostructured nanocrystals. Nano Lett. 2011, 11, 2919–2926.Google Scholar
  54. [54]
    Amirav, L.; Alivisatos, A. P. Photocatalytic hydrogen production with tunable nanorod heterostructures. J. Phys. Chem. Lett. 2010, 1, 1051–1054.Google Scholar
  55. [55]
    Bang, J. U.; Lee, S. J.; Jang, J. S.; Choi, W.; Song, H. Geometric effect of single or double metal-tipped CdSe nanorods on photocatalytic H2 generation. J. Phys. Chem. Lett. 2012, 3, 3781–3785.Google Scholar
  56. [56]
    Berr, M.; Vaneski, A.; Susha, A. S.; Rodríguez-Fernández, J.; Doblinger, M.; Jackel, F.; Rögach, A. L.; Feldmann, J. Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalytic hydrogen generation. Appl. Phys. Lett. 2010, 97, 093108.Google Scholar
  57. [57]
    Berr, M. J.; Wagner, P.; Fischbach, S.; Vaneski, A.; Schneider, J.; Susha, A. S.; Rogach, A. L.; Jäckel, F.; Feldmann, J. Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation. Appl. Phys. Lett. 2012, 100, 223903.Google Scholar
  58. [58]
    Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321–1324.Google Scholar
  59. [59]
    Wu, K. F.; Chen, Z. Y.; Lv, H. J.; Zhu, H. M.; Hill, C. L.; Lian, T. Q. Hole removal rate limits photodriven H2 generation efficiency in CdS-Pt and CdSe/CdS-Pt semiconductor nanorod–metal tip heterostructures. J. Am. Chem. Soc. 2014, 136, 7708–7716.Google Scholar
  60. [60]
    Zhu, H. M.; Song, N. H.; Lv, H. J.; Hill, C. L.; Lian, T. Q. Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. J. Am. Chem. Soc. 2012, 134, 11701–11708.Google Scholar
  61. [61]
    Joo, J.; Son, J. S.; Kwon, S. G.; Yu, J. H.; Hyeon, T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 2006, 128, 5632–5633.Google Scholar
  62. [62]
    Ithurria, S.; Dubertret, B. Quasi 2D colloidal cdse platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 2008, 130, 16504–16505.Google Scholar
  63. [63]
    Ouyang, J. Y.; Zaman, M. B.; Yan, F. J.; Johnston, D.; Li, G.; Wu, X. H.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K. Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses. J. Phys. Chem. C 2008, 112, 13805–13811.Google Scholar
  64. [64]
    Son, J. S.; Wen, X.-D.; Joo, J.; Chae, J.; Baek, S.-I.; Park, K.; Kim, J. H.; An, K.; Yu, J. H.; Kwon, S. G. et al. Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. Angew. Chem., Int. Ed. 2009, 48, 6861–6864.Google Scholar
  65. [65]
    Ithurria, S.; Bousquet, G.; Dubertret, B. Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. J. Am. Chem. Soc. 2011, 133, 3070–3077.Google Scholar
  66. [66]
    Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. Colloidal nanoplatelets with twodimensional electronic structure. Nat. Mater. 2011, 10, 936–941.Google Scholar
  67. [67]
    Li, Z.; Peng, X. G. Size/shape-controlled synthesis of colloidal CdSe quantum disks: Ligand and temperature effects. J. Am. Chem. Soc. 2011, 133, 6578–6586.Google Scholar
  68. [68]
    She, C. X.; Fedin, I.; Dolzhnikov, D. S.; Demortière, A.; Schaller, R. D.; Pelton, M.; Talapin, D. V. Low-threshold stimulated emission using colloidal quantum wells. Nano Lett. 2014, 14, 2772–2777.Google Scholar
  69. [69]
    Achtstein, A. W.; Antanovich, A.; Prudnikau, A.; Scott, R.; Woggon, U.; Artemyev, M. Linear absorption in CdSe nanoplates: Thickness and lateral size dependency of the intrinsic absorption. J. Phys. Chem. C 2015, 119, 20156–20161.Google Scholar
  70. [70]
    Yeltik, A.; Delikanli, S.; Olutas, M.; Kelestemur, Y.; Guzelturk, B.; Demir, H. V. Experimental determination of the absorption cross-section and molar extinction coefficient of colloidal CdSe nanoplatelets. J. Phys. Chem. C 2015, 119, 26768–26775.Google Scholar
  71. [71]
    Naeem, A.; Masia, F.; Christodoulou, S.; Moreels, I.; Borri, P.; Langbein, W. Giant exciton oscillator strength and radiatively limited dephasing in two-dimensional platelets. Phys. Rev. B 2015, 91, 121302.Google Scholar
  72. [72]
    Ma, X. D.; Diroll, B. T.; Cho, W.; Fedin, I.; Schaller, R. D.; Talapin, D. V.; Gray, S. K.; Wiederrecht, G. P.; Gosztola, D. J. Size-dependent biexciton quantum yields and carrier dynamics of quasi-two-dimensional core/shell nanoplatelets. ACS Nano 2017, 11, 9119–9127.Google Scholar
  73. [73]
    Sharma, M.; Gungor, K.; Yeltik, A.; Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Erdem, T.; Delikanli, S.; McBride, J. R.; Demir, H. V. Near-unity emitting copper-doped colloidal semiconductor quantum wells for luminescent solar concentrators. Adv. Mater. 2017, 29, 1700821.Google Scholar
  74. [74]
    Zhukovskyi, M.; Tongying, P.; Yashan, H.; Wang, Y. X.; Kuno, M. Efficient photocatalytic hydrogen generation from Ni nanoparticle decorated CdS nanosheets. ACS Catal. 2015, 5, 6615–6623.Google Scholar
  75. [75]
    Wu, K. F.; Li, Q. Y.; Du, Y. L.; Chen, Z. Y.; Lian, T. G. Ultrafast exciton quenching by energy and electron transfer in colloidal CdSe nanosheet-Pt heterostructures. Chem. Sci. 2015, 6, 1049–1054.Google Scholar
  76. [76]
    Li, Q. Y.; Zhou, B. Y.; McBride, J. R.; Lian, T. Q. Efficient diffusive transport of hot and cold excitons in colloidal type II CdSe/CdTe core/crown nanoplatelet heterostructures. ACS Energy Letters 2017, 2, 174–181.Google Scholar
  77. [77]
    Li, Q. Y.; Wu, K. F.; Chen, J. Q.; Chen, Z. Y.; McBride, J. R.; Lian, T. Q. Size-independent exciton localization efficiency in colloidal CdSe/CdS core/crown nanosheet type-I heterostructures. ACS Nano 2016, 10, 3843–3851.Google Scholar
  78. [78]
    Tessier, M. D.; Spinicelli, P.; Dupont, D.; Patriarche, G.; Ithurria, S.; Dubertret, B. Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. Nano Lett. 2014, 14, 207–213.Google Scholar
  79. [79]
    Antanovich, A. V.; Prudnikau, A. V.; Melnikau, D.; Rakovich, Y. P.; Chuvilin, A.; Woggon, U.; Achtstein, A. W.; Artemyev, M. V. Colloidal synthesis and optical properties of type-II CdSe-CdTe and inverted CdTe-CdSe core-wing heteronanoplatelets. Nanoscale 2015, 7, 8084–8092.Google Scholar
  80. [80]
    Pedetti, S.; Ithurria, S.; Heuclin, H.; Patriarche, G.; Dubertret, B. Type-II CdSe/CdTe core/crown semiconductor nanoplatelets. J. Am. Chem. Soc. 2014, 136, 16430–16438.Google Scholar
  81. [81]
    Wu, K. F.; Li, Q. Y.; Jia, Y. Y.; McBride, J. R.; Xie, Z.-X.; Lian, T. Q. Efficient and ultrafast formation of long-lived charge-transfer exciton state in atomically thin cadmium selenide/cadmium telluride type-II heteronanosheets. ACS Nano 2015, 9, 961–968.Google Scholar
  82. [82]
    Li, Q. Y.; Xu, Z. H.; McBride, J. R.; Lian, T. Q. Low threshold multiexciton optical gain in colloidal CdSe/CdTe core/crown type-II nanoplatelet heterostructures. ACS Nano 2017, 11, 2545–2553.Google Scholar
  83. [83]
    Li, Z.; Qin, H. Y.; Guzun, D.; Benamara, M.; Salamo, G.; Peng, X. G. Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties. Nano Res. 2012, 5, 337–351.Google Scholar
  84. [84]
    Pedetti, S.; Nadal, B.; Lhuillier, E.; Mahler, B.; Bouet, C.; Abecassis, B.; Xu, X. Z.; Dubertret, B. Optimized synthesis of CdTe nanoplatelets and photoresponse of CdTe nanoplatelets films. Chem. Mat. 2013, 25, 2455–2462.Google Scholar
  85. [85]
    Riedinger, A.; Ott, F. D.; Mule, A.; Mazzotti, S.; Knüsel, P. N.; Kress, S. J. P.; Prins, F.; Erwin, S. C.; Norris, D. J. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nat. Mater. 2017, 16, 743–748.Google Scholar
  86. [86]
    Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Two-dimensional colloidal nanocrystals. Chem. Rev. 2016, 116, 10934–10982.Google Scholar
  87. [87]
    Mahler, B.; Nadal, B.; Bouet, C.; Patriarche, G.; Dubertret, B. Core/shell colloidal semiconductor nanoplatelets. J. Am. Chem. Soc. 2012, 134, 18591–18598.Google Scholar
  88. [88]
    Tessier, M. D.; Javaux, C.; Maksimovic, I.; Loriette, V.; Dubertret, B. Spectroscopy of single CdSe nanoplatelets. ACS Nano 2012, 6, 6751–6758.Google Scholar
  89. [89]
    Pidgeon, C. R.; Brown, R. N. Interband magneto-absorption and faraday rotation in InSb. Phys. Rev. 1966, 146, 575–583.Google Scholar
  90. [90]
    Shinada, M.; Sugano, S. Interband optical transitions in extremely anisotropic semiconductors. I. Bound and unbound exciton absorption. J. Phys. Soc. Jpn. 1966, 21, 1936–1946.Google Scholar
  91. [91]
    Schmitt-Rink, S.; Chemla, D. S.; Miller, D. A. B. Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B 1985, 32, 6601–6609.Google Scholar
  92. [92]
    Keldysh, L. V. Coulomb interaction in thin semiconductor and semimetal films. Jetp Lett. 1979, 29, 658–661.Google Scholar
  93. [93]
    Achtstein, A. W.; Schliwa, A.; Prudnikau, A.; Hardzei, M.; Artemyev, M. V.; Thomsen, C.; Woggon, U. Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett. 2012, 12, 3151–3157.Google Scholar
  94. [94]
    Benchamekh, R.; Gippius, N. A.; Even, J.; Nestoklon, M. O.; Jancu, J. M.; Ithurria, S.; Dubertret, B.; Efros, A. L.; Voisin, P. Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe. Phys. Rev. B 2014, 89, 035307.Google Scholar
  95. [95]
    Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.Google Scholar
  96. [96]
    Brus, L. Size, dimensionality, and strong electron correlation in nanoscience. Acc. Chem. Res. 2014, 47, 2951–2959.Google Scholar
  97. [97]
    Shabaev, A.; Efros, A. L. 1D exciton spectroscopy of semiconductor nanorods. Nano Lett. 2004, 4, 1821–1825.Google Scholar
  98. [98]
    Chernikov, A.; Ruppert, C.; Hill, H. M.; Rigosi, A. F.; Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photonics 2015, 9, 466–470.Google Scholar
  99. [99]
    Hill, H. M.; Rigosi, A. F.; Roquelet, C.; Chernikov, A.; Berkelbach, T. C.; Reichman, D. R.; Hybertsen, M. S.; Brus, L. E.; Heinz, T. F. Observation of excitonic rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 2015, 15, 2992–2997.Google Scholar
  100. [100]
    Li, J.; Luo, L. H.; Huang, H. W.; Ma, C.; Ye, Z. Z.; Zeng, J.; He, H. P. 2D behaviors of excitons in cesium lead halide perovskite nanoplatelets. J. Phys. Chem. Lett. 2017, 8, 1161–1168.Google Scholar
  101. [101]
    Wu, K. F.; Song, N. H.; Liu, Z.; Zhu, H. M.; Rodríguez-Córdoba, W.; Lian, T. Q. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes. J. Phys. Chem. A 2013, 117, 7561–7570.Google Scholar
  102. [102]
    Wu, K. F.; Du, Y. L.; Tang, H.; Chen, Z. Y.; Lian, T. Q. Efficient extraction of trapped holes from colloidal CdS nanorods. J. Am. Chem. Soc. 2015, 137, 10224–10230.Google Scholar
  103. [103]
    Li, Q. Y.; Lian, T. Q. Area-and thickness-dependent biexciton Auger recombination in colloidal CdSe nanoplatelets: Breaking the “universal volume scaling law”. Nano Lett. 2017, 17, 3152–3158.Google Scholar
  104. [104]
    Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 2000, 104, 6112–6123.Google Scholar
  105. [105]
    Klimov, V.; Bolivar, P. H.; Kurz, H. Ultrafast carrier dynamics in semiconductor quantum dots. Phys. Rev. B 1996, 53, 1463–1467.Google Scholar
  106. [106]
    Hunsche, S.; Dekorsy, T.; Klimov, V.; Kurz, H. Ultrafast dynamics of carrier-induced absorption changes in highlyexcited CdSe nanocrystals. Appl. Phys. B 1996, 62, 3–10.Google Scholar
  107. [107]
    Klimov, V. I.; Schwarz, C. J.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Ultrafast dynamics of inter-and intraband transitions in semiconductor nanocrystals: Implications for quantum-dot lasers. Phys. Rev. B 1999, 60, R2177–R2180.Google Scholar
  108. [108]
    Diroll, B. T.; Fedin, I.; Darancet, P.; Talapin, D. V.; Schaller, R. D. Surface-area-dependent electron transfer between isoenergetic 2D quantum wells and a molecular acceptor. J. Am. Chem. Soc. 2016, 138, 11109–11112.Google Scholar
  109. [109]
    Cassette, E.; Pensack, R. D.; Mahler, B.; Scholes, G. D. Room-temperature exciton coherence and dephasing in two-dimensional nanostructures. Nat. Commun. 2015, 6, 6086.Google Scholar
  110. [110]
    Kunneman, L. T.; Tessier, M. D.; Heuclin, H.; Dubertret, B.; Aulin, Y. V.; Grozema, F. C.; Schins, J. M.; Siebbeles, L. D. A. Bimolecular Auger recombination of electron-hole pairs in two-dimensional CdSe and CdSe/CdZnS core/shell nanoplatelets. J. Phys. Chem. Lett. 2013, 4, 3574–3578.Google Scholar
  111. [111]
    Kumagai, M.; Takagahara, T. Excitonic and nonlinear-optical properties of dielectric quantum-well structures. Phys. Rev. B 1989, 40, 12359–12381.Google Scholar
  112. [112]
    Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 2013, 88, 045318.Google Scholar
  113. [113]
    Jena, D.; Konar, A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 2007, 98, 136805.Google Scholar
  114. [114]
    Okuhata, T.; Tamai, N. Face-dependent electron transfer in CdSe nanoplatelet–methyl viologen complexes. J. Phys. Chem. C 2016, 120, 17052–17059.Google Scholar
  115. [115]
    Kunneman, L. T.; Schins, J. M.; Pedetti, S.; Heuclin, H.; Grozema, F. C.; Houtepen, A. J.; Dubertret, B.; Siebbeles, L. D. A. Nature and decay pathways of photoexcited states in CdSe and CdSe/CdS nanoplatelets. Nano Lett. 2014, 14, 7039–7045.Google Scholar
  116. [116]
    Dong, S.; Pal, S.; Lian, J.; Chan, Y.; Prezhdo, O. V.; Loh, Z.-H. Sub-picosecond Auger-mediated hole-trapping dynamics in colloidal CdSe/CdS core/shell nanoplatelets. ACS Nano 2016, 10, 9370–9378.Google Scholar
  117. [117]
    Pan, A. L.; Liu, D.; Liu, R. B.; Wang, F. F.; Zhu, X.; Zou, B. S. Optical waveguide through CdS nanoribbons. Small 2005, 1, 980–983.Google Scholar
  118. [118]
    Chai, Z. G.; Zeng, T.-T.; Li, Q.; Lu, L.-Q.; Xiao, W.-J.; Xu, D. S. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst. J. Am. Chem. Soc. 2016, 138, 10128–10131.Google Scholar
  119. [119]
    Simon, T.; Bouchonville, N.; Berr, M. J.; Vaneski, A.; Adrovic, A.; Volbers, D.; Wyrwich, R.; Döblinger, M.; Susha, A. S.; Rogach, A. L. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 2014, 13, 1013–1018.Google Scholar
  120. [120]
    Kalisman, P.; Nakibli, Y.; Amirav, L. Perfect photonto-hydrogen conversion efficiency. Nano Lett. 2016, 16, 1776–1781.Google Scholar
  121. [121]
    Berr, M. J.; Schweinberger, F. F.; Döblinger, M.; Sanwald, K. E.; Wolff, C.; Breimeier, J.; Crampton, A. S.; Ridge, C. J.; Tschurl, M.; Heiz, U. et al. Size-selected subnanometer cluster catalysts on semiconductor nanocrystal films for atomic scale insight into photocatalysis. Nano Lett. 2012, 12, 5903–5906.Google Scholar
  122. [122]
    Khon, E.; Lambright, K.; Khnayzer, R. S.; Moroz, P.; Perera, D.; Butaeva, E.; Lambright, S.; Castellano, F. N.; Zamkov, M. Improving the catalytic activity of semiconductor nanocrystals through selective domain etching. Nano Lett. 2013, 13, 2016–2023.Google Scholar
  123. [123]
    Tongying, P.; Plashnitsa, V. V.; Petchsang, N.; Vietmeyer, F.; Ferraudi, G. J.; Krylova, G.; Kuno, M. Photocatalytic hydrogen generation efficiencies in one-dimensional CdSe heterostructures. J. Phys. Chem. Lett. 2012, 3, 3234–3240.Google Scholar
  124. [124]
    Elmalem, E.; Saunders, A. E.; Costi, R.; Salant, A.; Banin, U. Growth of photocatalytic CdSe–Pt nanorods and nanonets. Adv. Mater. 2008, 20, 4312–4317.Google Scholar
  125. [125]
    Naskar, S.; Lübkemann, F.; Hamid, S.; Freytag, A.; Wolf, A.; Koch, J.; Ivanova, I.; Pfnür, H.; Dorfs, D.; Bahnemann, D. W. et al. Synthesis of ternary and quaternary Au and Pt decorated CdSe/CdS heteronanoplatelets with controllable morphology. Adv. Funct. Mater. 2017, 27, 1604685.Google Scholar
  126. [126]
    Nakibli, Y.; Kalisman, P.; Amirav, L. Less is more: The case of metal cocatalysts. J. Phys. Chem. Lett. 2015, 6, 2265–2268.Google Scholar
  127. [127]
    Matsumoto, H.; Sakata, T.; Mori, H.; Yoneyama, H. Preparation of monodisperse CdS nanocrystals by size selective photocorrosion. J. Phys. Chem. 1996, 100, 13781–13785.Google Scholar
  128. [128]
    Zhang, L. X.; Liu, Q. L.; Aoki, T.; Crozier, P. A. Structural evolution during photocorrosion of Ni/NiO core/shell cocatalyst on TiO2. J. Phys. Chem. C 2015, 119, 7207–7214.Google Scholar
  129. [129]
    Zhu, X. Y.; Monahan, N. R.; Gong, Z. Z.; Zhu, H. M.; Williams, K.; Nelson, C. A. Charge transfer excitons at van der Waals interfaces. J. Am. Chem. Soc. 2015, 137, 8313–8320.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryEmory UniversityAtlantaUSA

Personalised recommendations