Advertisement

Nano Research

, Volume 11, Issue 6, pp 3469–3479 | Cite as

Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis

  • Zhiyuan Qi
  • Yuchen Pei
  • Tian Wei Goh
  • Zhaoyi Wang
  • Xinle Li
  • Mary Lowe
  • Raghu V. Maligal-Ganesh
  • Wenyu Huang
Research Article

Abstract

We report a facile strategy to synthesize intermetallic nanoparticle (iNP) electrocatalysts via one-pot pyrolysis of a zeolitic imidazolate framework, ZIF-8, encapsulating precious metal nanoparticles (NPs). ZIF-8 serves not only as precursor for N-doped carbon (NC), but also as Zn source for the formation of intermetallic or alloy NPs with the encapsulated metals. The resulting sub-4 nm PtZn iNPs embedded in NC exhibit high sintering resistance up to 1,000 °C. Importantly, the present methodology allows fine-tuning of both composition (e.g., PdZn and RhZn iNPs, as well as AuZn and RuZn alloy NPs) and size (2.4, 3.7, and 5.4 nm PtZn) of the as-formed bimetallic NPs. To the best of our knowledge, this is the first report of a metal-organic framework (MOF) with multiple functionalities, such as secondary metal source, carbon precursor, and size-regulating reagent, which promote the formation of iNPs. This work opens a new avenue for the synthesis of highly uniform and stable iNPs.

Keywords

intermetallic compounds cage confinement pyrolysis electrocatalysis sintering resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund for support of this research. We thank Gordon J. Miller for the use of the X-ray diffractometer. We also thank Dapeng Jing at the Materials Analysis and Research Laboratory (MARL) of Iowa State University for the assistance on XPS measurement.

Supplementary material

12274_2018_2016_MOESM1_ESM.pdf (6.1 mb)
Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis

References

  1. [1]
    Wang, Y. J.; Zhao, N. N.; Fang, B. Z.; Li, H.; Bi, X. T. T.; Wang, H. J. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467.CrossRefGoogle Scholar
  2. [2]
    Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.CrossRefGoogle Scholar
  3. [3]
    Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.CrossRefGoogle Scholar
  4. [4]
    You, H. J.; Yang, S. C.; Ding, B. J.; Yang, H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem. Soc. Rev. 2013, 42, 2880–2904.CrossRefGoogle Scholar
  5. [5]
    Furukawa, S.; Komatsu, T. Intermetallic compounds: Promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal. 2017, 7, 735–765.CrossRefGoogle Scholar
  6. [6]
    Bing, Y. H.; Liu, H. S.; Zhang, L.; Ghosh, D.; Zhang, J. J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 2010, 39, 2184–2202.CrossRefGoogle Scholar
  7. [7]
    Watanabe, M.; Tsurumi, K.; Mizukami, T.; Nakamura, T.; Stonehart, P. Activity and stability of ordered and disordered Co-Pt alloys for phosphoric-acid fuel-cells. J. Electrochem. Soc. 1994, 141, 2659–2668.CrossRefGoogle Scholar
  8. [8]
    Wu, J. F.; Yuan, X. Z.; Martin, J. J.; Wang, H. J.; Zhang, J. J.; Shen, J.; Wu, S. H.; Merida, W. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. J. Power Sources 2008, 184, 104–119.CrossRefGoogle Scholar
  9. [9]
    Yan, Y. C.; Du, J. S. S.; Gilroy, K. D.; Yang, D. R.; Xia, Y. N.; Zhang, H. Intermetallic nanocrystals: Syntheses and catalytic applications. Adv. Mater. 2017, 29, 1605997.CrossRefGoogle Scholar
  10. [10]
    Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.CrossRefGoogle Scholar
  11. [11]
    Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.CrossRefGoogle Scholar
  12. [12]
    Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.CrossRefGoogle Scholar
  13. [13]
    Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.CrossRefGoogle Scholar
  14. [14]
    Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.CrossRefGoogle Scholar
  15. [15]
    Kang, Y. J.; Pyo, J. B.; Ye, X. C.; Gordon, T. R.; Murray, C. B. Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals. ACS Nano 2012, 6, 5642–5647.CrossRefGoogle Scholar
  16. [16]
    Qi, Z. Y.; Xiao, C. X.; Liu, C.; Goh, T. W.; Zhou, L.; Maligal-Ganesh, R.; Pei, Y. C.; Li, X. L.; Curtiss, L. A.; Huang, W. Y. Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction. J. Am. Chem. Soc. 2017, 139, 4762–4768.CrossRefGoogle Scholar
  17. [17]
    Xiao, C. X.; Maligal-Ganesh, R. V.; Li, T.; Qi, Z. Y.; Guo, Z. Y.; Brashler, K. T.; Goes, S.; Li, X. L.; Goh, T. W.; Winans, R. E. et al. High-temperature-stable and regenerable catalysts: Platinum nanoparticles in aligned mesoporous silica wells. ChemSusChem 2013, 6, 1915–1922.CrossRefGoogle Scholar
  18. [18]
    Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat. Mater. 2009, 8, 126–131.CrossRefGoogle Scholar
  19. [19]
    Pei, Y. C.; Maligal-Ganesh, R. V.; Xiao, C. X.; Goh, T. W.; Brashler, K.; Gustafson, J. A.; Huang, W. Y. An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures. Nanoscale 2015, 7, 16721–16728.CrossRefGoogle Scholar
  20. [20]
    Maligal-Ganesh, R. V.; Xiao, C. X.; Goh, T. W.; Wang, L. L.; Gustafson, J.; Pei, Y. C.; Qi, Z. Y.; Johnson, D. D.; Zhang, S. R.; Tao, F. et al. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: Exemplified for furfural hydrogenation. ACS Catal. 2016, 6, 1754–1763.CrossRefGoogle Scholar
  21. [21]
    Li, X. L.; Goh, T. W.; Xiao, C. X.; Stanton, A. L. D.; Pei, Y. C.; Jain, P. K.; Huang, W. Y. Synthesis of monodisperse palladium nanoclusters using metal-organic frameworks as sacrificial templates. ChemNanoMat 2016, 2, 810–815.CrossRefGoogle Scholar
  22. [22]
    Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem., Int. Ed. 2016, 55, 3685–3689.CrossRefGoogle Scholar
  23. [23]
    Li, X. L.; Goh, T. W.; Li, L.; Xiao, C. X.; Guo, Z. Y.; Zeng, X. C.; Huang, W. Y. Controlling catalytic properties of Pd nanoclusters through their chemical environment at the atomic level using isoreticular metal-organic frameworks. ACS Catal. 2016, 6, 3461–3468.CrossRefGoogle Scholar
  24. [24]
    Li, X. L.; Van Zeeland, R.; Maligal-Ganesh, R. V.; Pei, Y. C.; Power, G.; Stanley, L.; Huang, W. Y. Impact of linker engineering on the catalytic activity of metal-organic frameworks containing Pd(II)-bipyridine complexes. ACS Catal. 2016, 6, 6324–6328.CrossRefGoogle Scholar
  25. [25]
    Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.CrossRefGoogle Scholar
  26. [26]
    Zhu, Q. L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev. 2014, 43, 5468–5512.CrossRefGoogle Scholar
  27. [27]
    Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.CrossRefGoogle Scholar
  28. [28]
    Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391.CrossRefGoogle Scholar
  29. [29]
    Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668.CrossRefGoogle Scholar
  30. [30]
    You, B.; Jiang, N.; Sheng, M. L.; Drisdell, W. S.; Yano, J.; Sun, Y. J. Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 2015, 5, 7068–7076.CrossRefGoogle Scholar
  31. [31]
    Xu, Y. T.; Xiao, X. F.; Ye, Z. M.; Zhao, S. L.; Shen, R. G.; He, C. T.; Zhang, J. P.; Li, Y. D.; Chen, X. M. Cageconfinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 5285–5288.CrossRefGoogle Scholar
  32. [32]
    Pei, Y. C.; Qi, Z. Y.; Li, X. L.; Maligal-Ganesh, R. V.; Goh, T. W.; Xiao, C. X.; Wang, T. Y.; Huang, W. Y. Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts. J. Mater. Chem. A 2017, 5, 6186–6192.CrossRefGoogle Scholar
  33. [33]
    Li, X. L.; Zhang, B. Y.; Fang, Y. H.; Sun, W. J.; Qi, Z. Y.; Pei, Y. C.; Qi, S. Y.; Yuan, P. Y.; Luan, X. C.; Goh, T. W. et al. Metal-organic-framework-derived carbons: Applications as solid-base catalyst and support for Pd nanoparticles in tandem catalysis. Chem.-Eur. J. 2017, 23, 4266–4270.CrossRefGoogle Scholar
  34. [34]
    Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.CrossRefGoogle Scholar
  35. [35]
    Ji, S. F.; Chen, Y. J.; Fu, Q.; Chen, Y. F.; Dong, J. C.; Chen, W. X.; Li, Z.; Wang, Y.; Gu, L.; He, W. et al. Confined pyrolysis within metal-organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 2017, 139, 9795–9798.CrossRefGoogle Scholar
  36. [36]
    Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.CrossRefGoogle Scholar
  37. [37]
    Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.CrossRefGoogle Scholar
  38. [38]
    Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energ. Environ. Sci. 2015, 8, 1837–1866.CrossRefGoogle Scholar
  39. [39]
    Zhang, W.; Wu, Z. Y.; Jiang, H. L.; Yu, S. H. Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 2014, 136, 14385–14388.CrossRefGoogle Scholar
  40. [40]
    Teranishi, T.; Hosoe, M.; Tanaka, T.; Miyake, M. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J. Phys. Chem. B 1999, 103, 3818–3827.CrossRefGoogle Scholar
  41. [41]
    Song, H.; Rioux, R. M.; Hoefelmeyer, J. D.; Komor, R.; Niesz, K.; Grass, M.; Yang, P. D.; Somorjai, G. A. Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: Synthesis, characterization, and catalytic properties. J. Am. Chem. Soc. 2006, 128, 3027–3037.CrossRefGoogle Scholar
  42. [42]
    Pei, Y. C.; Xiao, C. X.; Goh, T. W.; Zhang, Q. H.; Goes, S. N.; Sun, W. J.; Huang, W. Y. Tuning surface properties of amino-functionalized silica for metal nanoparticle loading: The vital role of an annealing process. Surf. Sci. 2016, 648, 299–306.CrossRefGoogle Scholar
  43. [43]
    Jana, N. R.; Gearheart, L.; Murphy, C. J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir 2001, 17, 6782–6786.CrossRefGoogle Scholar
  44. [44]
    Li, Y.; Boone, E.; El-Sayed, M. A. Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution. Langmuir 2002, 18, 4921–4925.CrossRefGoogle Scholar
  45. [45]
    Massalski, T. B.; Okamoto, H.; Subramanian, P. R.; Kacprzak, L. Binary Alloy Phase Diagrams, 2nd ed.; ASM International: Ohio, 1990.Google Scholar
  46. [46]
    Rösler, C.; Fischer, R. A. Metal-organic frameworks as hosts for nanoparticles. Crystengcomm 2015, 17, 199–217.CrossRefGoogle Scholar
  47. [47]
    Stephenson, C. J.; Hupp, J. T.; Farha, O. K. Pt@ZIF-8 composite for the regioselective hydrogenation of terminal unsaturations in 1,3-dienes and alkynes. Inorg. Chem. Front. 2015, 2, 448–452.CrossRefGoogle Scholar
  48. [48]
    Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.CrossRefGoogle Scholar
  49. [49]
    Jiang, H. L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: Co oxidation over gold nanoparticles deposited to metal-organic framework. J. Am. Chem. Soc. 2009, 131, 11302–11303.CrossRefGoogle Scholar
  50. [50]
    Zhou, H. R.; Yang, X. F.; Li, L.; Liu, X. Y.; Huang, Y. Q.; Pan, X. L.; Wang, A. Q.; Li, J.; Zhang, T. PdZn intermetallic nanostructure with Pt-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal. 2016, 6, 1054–1061.CrossRefGoogle Scholar
  51. [51]
    Iihama, S.; Furukawa, S.; Komatsu, T. Efficient catalytic system for chemoselective hydrogenation of halonitrobenzene to haloaniline using PtZn intermetallic compound. ACS Catal. 2016, 6, 742–746.CrossRefGoogle Scholar
  52. [52]
    Furukawa, S.; Yoshida, Y.; Komatsu, T. Chemoselective hydrogenation of nitrostyrene to aminostyrene over Pd- and Rh-based intermetallic compounds. ACS Catal. 2014, 4, 1441–1450.CrossRefGoogle Scholar
  53. [53]
    Du, X. X.; He, Y.; Wang, X. X.; Wang, J. N. Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability. Energy Environ. Sci. 2016, 9, 2623–2632.CrossRefGoogle Scholar
  54. [54]
    Cui, Z. M.; Chen, H.; Zhou, W. D.; Zhao, M. T.; DiSalvo, F. J. Structurally ordered Pt3Cr as oxygen reduction electrocatalyst: Ordering control and origin of enhanced stability. Chem. Mater. 2015, 27, 7538–7545.CrossRefGoogle Scholar
  55. [55]
    Shim, J.; Lee, J.; Ye, Y.; Hwang, J.; Kim, S. K.; Lim, T. H.; Wiesner, U.; Lee, J. One-pot synthesis of intermetallic electrocatalysts in ordered, large-pore mesoporous carbon/silica toward formic acid oxidation. ACS Nano 2012, 6, 6870–6881.CrossRefGoogle Scholar
  56. [56]
    Chung, D. Y.; Jun, S. W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H.; Chung, Y. H.; Kim, H. et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 15478–15485.CrossRefGoogle Scholar
  57. [57]
    Magno, L. M.; Sigle, W.; van Aken, P. A.; Angelescu, D.; Stubenrauch, C. Size control of PtPb intermetallic nanoparticles prepared via microemulsions. Phys. Chem. Chem. Phys. 2011, 13, 9134–9136.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhiyuan Qi
    • 1
    • 2
  • Yuchen Pei
    • 1
    • 2
  • Tian Wei Goh
    • 1
    • 2
  • Zhaoyi Wang
    • 1
    • 3
  • Xinle Li
    • 1
    • 2
  • Mary Lowe
    • 1
  • Raghu V. Maligal-Ganesh
    • 1
    • 2
  • Wenyu Huang
    • 1
    • 2
  1. 1.Department of ChemistryIowa State UniversityAmesUSA
  2. 2.Ames LaboratoryU.S. Department of EnergyAmesUSA
  3. 3.Department of ChemistryBeijing Normal UniversityBeijingChina

Personalised recommendations