Advertisement

Nano Research

, Volume 11, Issue 8, pp 4215–4224 | Cite as

Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials

  • Georgies Alene Asres
  • José J. Baldoví
  • Aron Dombovari
  • Topias Järvinen
  • Gabriela Simone Lorite
  • Melinda Mohl
  • Andrey Shchukarev
  • Alejandro Pérez Paz
  • Lede Xian
  • Jyri-Pekka Mikkola
  • Anita Lloyd Spetz
  • Heli Jantunen
  • Ángel RubioEmail author
  • Krisztian KordásEmail author
Open Access
Research Article

Abstract

Owing to their higher intrinsic electrical conductivity and chemical stability with respect to their oxide counterparts, nanostructured metal sulfides are expected to revive materials for resistive chemical sensor applications. Herein, we explore the gas sensing behavior of WS2 nanowire-nanoflake hybrid materials and demonstrate their excellent sensitivity (0.043 ppm-1) as well as high selectivity towards H2S relative to CO, NH3, H2, and NO (with corresponding sensitivities of 0.002, 0.0074, 0.0002, and 0.0046 ppm-1, respectively). Gas response measurements, complemented with the results of X-ray photoelectron spectroscopy analysis and first-principles calculations based on density functional theory, suggest that the intrinsic electronic properties of pristine WS2 alone are not sufficient to explain the observed high sensitivity towards H2S. A major role in this behavior is also played by O doping in the S sites of the WS2 lattice. The results of the present study open up new avenues for the use of transition metal disulfide nanomaterials as effective alternatives to metal oxides in future applications for industrial process control, security, and health and environmental safety.

Keywords

WS2 nanowire nanoflake gas sensor H2O doping 

Notes

Acknowledgements

Funding received from Bio4Energy programme, Academy of Finland (projects Suplacat and ClintoxNP (No. 268944)), University of Oulu (More than Moore research community) and University of Oulu Graduate School (Infotech Oulu) is acknowledged. We acknowledge support from the EU (No. ERC-2016-AdG-694097 QSpec-NewMat) and the Basque Government “Grupos Consolidados UPV/EHU” (No. IT578-13). J. J. B. and L. D. X. thank the EU for the Marie Curie Fellowship (Nos. H2020-MSCA-IF-2016-751047 and H2020-MSCA-IF-2015-709382). A. P. P. thanks postdoctoral fellowship from the Spanish “Juan de la Cierva-incorporación” program (No. IJCI-2014-20147). We also would like to acknowledge Sami Saukko (Center of Microscopy and Nanotechnology, University of Oulu) for his assistance with TEM analyses. A. L. S. acknowledges the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU No. 2009-00971).

Supplementary material

12274_2018_2009_MOESM1_ESM.pdf (1.7 mb)
Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials

References

  1. [1]
    Neri, G. First fifty years of chemoresistive gas sensors. Chemosensors 2015, 3, 1–20.CrossRefGoogle Scholar
  2. [2]
    Devan, R. S.; Patil, R. A.; Lin, J. H.; Ma, Y. R. One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 2012, 22, 3326–3370.CrossRefGoogle Scholar
  3. [3]
    Korotcenkov, G. Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches. Sens. Actuat. B Chem. 2015, 107, 209–232.CrossRefGoogle Scholar
  4. [4]
    Palmisano, V.; Weidner, E.; Boon-Brett, L.; Bonato, C.; Harskamp, F.; Moretto, P.; Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W. J. Selectivity and resistance to poisons of commercial hydrogen sensors. Int. J. Hydrogen Energy 2015, 40, 11740–11747.CrossRefGoogle Scholar
  5. [5]
    Modi, A.; Koratkar, N.; Lass, E.; Wei, B. Q.; Ajayan, P. M. Miniaturized gas ionization sensors using carbon nanotubes. Nature 2003, 424, 171–174.CrossRefGoogle Scholar
  6. [6]
    Usha, S. P.; Mishra, S. K.; Gupta, B. D. Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnO nanoparticles: A comparison of surface plasmon resonance and lossy mode resonance. Sens. Actuat. B Chem. 2015, 218, 196–204.CrossRefGoogle Scholar
  7. [7]
    Chen, G. G.; Paronyan, T. M.; Pigos, E. M.; Harutyunyan, A. R. Enhanced gas sensing in pristine carbon nanotubes under continuous ultraviolet light illumination. Sci. Rep. 2012, 2, 343.CrossRefGoogle Scholar
  8. [8]
    Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.CrossRefGoogle Scholar
  9. [9]
    Janata, J.; Josowicz, M. Conducting polymers in electronic chemical sensors. Nat. Mater. 2003, 2, 19–24.CrossRefGoogle Scholar
  10. [10]
    Kannan, P. K.; Late, D. J.; Morgan, H.; Rout, C. S. Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 2015, 7, 13293–13312.CrossRefGoogle Scholar
  11. [11]
    Li, B. L.; Wang, J. P.; Zou, H. L.; Garaj, S.; Lim, C. T.; Xie, J. P.; Li, N. B.; Leong, D. T. Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv. Funct. Mater. 2016, 26, 7034–7056.CrossRefGoogle Scholar
  12. [12]
    Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673.CrossRefGoogle Scholar
  13. [13]
    Cho, B.; Hahm, M. G.; Choi, M.; Yoon, J.; Kim, A. R.; Lee, Y.-J.; Park, S.-G.; Kwon, J.-D.; Kim, C. S.; Song, M. et al. Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 2015, 5, 8052.CrossRefGoogle Scholar
  14. [14]
    Late, D. J.; Huang, Y.-K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 2013, 7, 4879–4891.CrossRefGoogle Scholar
  15. [15]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.CrossRefGoogle Scholar
  16. [16]
    Ko, K. Y.; Song, J.-G.; Kim, Y.; Choi, T.; Shin, S.; Lee, C. W.; Lee, K.; Koo, J.; Lee, H.; Kim, J. et al. Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 2016, 10, 9287–9296.CrossRefGoogle Scholar
  17. [17]
    O’Brien, M.; Lee, K.; Morrish, R.; Berner, N. C.; McEvoy, N.; Wolden, C. A.; Duesberg, G. S. Plasma assisted synthesis of WS2 for gas sensing applications. Chem. Phys. Lett. 2014, 615, 6–10.CrossRefGoogle Scholar
  18. [18]
    Zhou, C. J.; Yang, W. H.; Zhu, H. L. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2. J. Chem. Phys. 2015, 142, 214704.CrossRefGoogle Scholar
  19. [19]
    Asres, G. A.; Dombovari, A.; Sipola, T.; Pskás, R.; Kukovecz, A.; Kónya, Z.; Popov, A.; Lin, J.-F.; Lorite, G. S.; Mohl, M. et al. A novel WS2 nanowire-nanoflake hybrid material synthesized from WO3 nanowires in sulfur vapor. Sci. Rep. 2016, 6, 25610.CrossRefGoogle Scholar
  20. [20]
    Ma, J. M.; Mei, L.; Chen, Y. J.; Li, Q. H.; Wang, T. H.; Xu, Z.; Duan, X. C.; Zheng, W. J. α-Fe2O3 nanochains: Ammonium acetate-based ionothermal synthesis and ultrasensitive sensors for low-ppm-level H2S gas. Nanoscale 2013, 5, 895–898.CrossRefGoogle Scholar
  21. [21]
    Li, Z. J.; Huang, Y. W.; Zhang, S. C.; Chen, W. M.; Kuang, Z.; Ao, D. Y.; Liu, W.; Fu, Y. Q. A fast response & recovery H2S gas sensor based on α-Fe2O3 nanoparticles with ppb level detection limit. J. Hazard. Mater. 2015, 300, 167–174.CrossRefGoogle Scholar
  22. [22]
    Manorama, S.; Devi, G. S.; Rao, V. J. Hydrogen sulfide sensor based on tin oxide deposited by spray pyrolysis and microwave plasma chemical vapor deposition. Appl. Phys. Lett. 1994, 64, 3163–3165.CrossRefGoogle Scholar
  23. [23]
    Kneer, J.; Knobelspies, S.; Bierer, B.; Wollenstein, J.; Palzer, S. New method to selectively determine hydrogen sulfide concentrations using CuO layers. Sens. Actuat. B Chem 2016, 222, 625–631.CrossRefGoogle Scholar
  24. [24]
    Zhang, F.; Zhu, A. W.; Luo, Y. P.; Tian, Y.; Yang, J. H.; Qin, Y. CuO nanosheets for sensitive and selective determination of H2S with high recovery ability. J. Phys. Chem. C 2010, 114, 19214–19219.CrossRefGoogle Scholar
  25. [25]
    Li, Y. H.; Luo, W.; Qin, N.; Dong, J. P.; Wei, J.; Li, W.; Feng, S. S.; Chen, J. C.; Xu, J. Q.; Elzatahry, A. A. et al. Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. Angew. Chem., Int. Ed. 2014, 53, 9035–9040.CrossRefGoogle Scholar
  26. [26]
    Li, Z. J.; Niu, X. Y.; Lin, Z. J.; Wang, N. N.; Shen, H. H.; Liu, W.; Sun, K.; Fu, Y. Q.; Wang, Z. G. Hydrothermally synthesized CeO2 nanowires for H2S sensing at room temperature. J. Alloy. Comp. 2016, 682, 647–653.CrossRefGoogle Scholar
  27. [27]
    Li, M.; Zhou, D. X.; Zhao, J.; Zheng, Z. P.; He, J. G.; Hu, L.; Xia, Z.; Tang, J.; Liu, H. Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection. Sens. Actuat. B Chem. 2015, 217, 198–201.CrossRefGoogle Scholar
  28. [28]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  29. [29]
    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car.; R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.CrossRefGoogle Scholar
  30. [30]
    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.CrossRefGoogle Scholar
  31. [31]
    Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 1998, 58, 3641–3662.CrossRefGoogle Scholar
  32. [32]
    Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  33. [33]
    Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204.CrossRefGoogle Scholar
  34. [34]
    Kukkola, J.; Mohl, M.; Leino, A.-R.; Maklin, J.; Halonen, N.; Shchukarev, A; Konya, Z.; Jantunen, H.; Kordás, K. Room temperature hydrogen sensors based on metal decorated WO3 nanowires. Sens. Actuat. B Chem. 2013, 186, 90–95.CrossRefGoogle Scholar
  35. [35]
    Leenaerts, O.; Partoens, B.; Peeters, F. M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416.CrossRefGoogle Scholar
  36. [36]
    Perrozzi, F.; Emamjomeh, S. M.; Paolucci, V.; Taglieri, G.; Ottaviano, L.; Cantalini, C. Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2. Sens. Actuat. B Chem. 2017, 243, 812–822.CrossRefGoogle Scholar
  37. [37]
    Kukkola, J.; Mohl, M.; Leino, A.-R.; Tóth, G.; Wu, M.-C.; Shchukarev, A.; Popov, A.; Mikkola, J.-P.; Lauri, J.; Riihimäki, M. et al. Inkjet-printed gas sensors: Metal decorated WO3 nanoparticles and their gas sensing properties. J. Mater. Chem. 2012, 22, 17878–17886.CrossRefGoogle Scholar
  38. [38]
    Kukkola, J.; Maklin, J.; Halonen, N.; Kyllönen, T.; Tóth, G.; Szabó, M.; Shchukarev, A.; Mikkola, J.-P.; Jantunen, H.; Kordás, K. Gas sensors based on anodic tungsten oxide. Sens. Actuat. B Chem. 2011, 153, 293–300.CrossRefGoogle Scholar
  39. [39]
    Cha, J.-H.; Choi, S.-J.; Yu, S.; Kim, I.-D. 2D WS2-edge functionalized multi-channel carbon nanofibers: Effect of WS2 edge-abundant structure on room temperature NO2 sensing. J. Mater. Chem. A 2017, 5, 8725–8732.CrossRefGoogle Scholar

Copyright information

© The author(s) 2018

Funding: Open access funding provided by Max Planck Society.

Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Georgies Alene Asres
    • 1
  • José J. Baldoví
    • 2
    • 3
  • Aron Dombovari
    • 1
  • Topias Järvinen
    • 1
  • Gabriela Simone Lorite
    • 1
  • Melinda Mohl
    • 1
  • Andrey Shchukarev
    • 4
  • Alejandro Pérez Paz
    • 3
    • 5
  • Lede Xian
    • 2
    • 3
  • Jyri-Pekka Mikkola
    • 4
    • 6
  • Anita Lloyd Spetz
    • 1
    • 7
  • Heli Jantunen
    • 1
  • Ángel Rubio
    • 2
    • 3
    Email author
  • Krisztian Kordás
    • 1
    Email author
  1. 1.Microelectronics Research Unit, Faculty of Information Technology and Electrical EngineeringUniversity of OuluOuluFinland
  2. 2.Max Planck Institute for the Structure and Dynamics of MatterHamburgGermany
  3. 3.Nano-Bio Spectroscopy Group, European Theoretical Spectroscopy Facility (ETSF)Universidad del País Vasco, CFM SCIC-UPV/EHU-MPC DIPCSan SebastianSpain
  4. 4.Technical Chemistry, Department of Chemistry, Chemical-Biological CentreUmeå UniversityUmeåSweden
  5. 5.School of Chemical Sciences and Engineering, School of Physics and NanotechnologyYachay Tech UniversityUrcuquíEcuador
  6. 6.Industrial Chemistry & Reaction Engineering, Department of Chemical Engineering, Johan Gadolin Process Chemistry CentreÅbo Akademi UniversityÅbo-TurkuFinland
  7. 7.Sensor and Actuator Systems, Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden

Personalised recommendations