Advertisement

Nano Research

, Volume 11, Issue 8, pp 4199–4214 | Cite as

Extreme biomimetics: A carbonized 3D spongin scaffold as a novel support for nanostructured manganese oxide(IV) and its electrochemical applications

  • Tomasz Szatkowski
  • Kacper Kopczyński
  • Mykhailo Motylenko
  • Horst Borrmann
  • Beata Mania
  • Małgorzata Graś
  • Grzegorz Lota
  • Vasilii V. Bazhenov
  • David Rafaja
  • Friedrich Roth
  • Juliane Weise
  • Enrico Langer
  • Marcin Wysokowski
  • Sonia Żółtowska-Aksamitowska
  • Iaroslav Petrenko
  • Serguei L. Molodtsov
  • Jana Hubálková
  • Christos G. Aneziris
  • Yvonne Joseph
  • Allison L. Stelling
  • Hermann Ehrlich
  • Teofil Jesionowski
Research Article

Abstract

Composites containing biological materials with nanostructured architecture have become of great interest in modern materials science, yielding both interesting chemical properties and inspiration for biomimetic research. Herein, we describe the preparation of a novel 3D nanostructured MnO2-based composite developed using a carbonized proteinaceous spongin template by an extreme biomimetics approach. The thermal stability of the spongin-based scaffold facilitated the formation of both carbonized material (at 650 °C with exclusion of oxygen) and manganese oxide with a defined nanoscale structure under 150 °C. Remarkably, the unique network of spongin fibers was maintained after pyrolysis and hydrothermal processing, yielding a novel porous support. The MnO2-spongin composite shows a bimodal pore distribution, with macropores originating from the spongin network and mesopores from the nanostructured oxidic coating. Interestingly, the composites also showed improved electrochemical properties compared to those of MnO2. Voltammetry cycling demonstrated the good stability of the material over more than 3,000 charging/discharging cycles. Additionally, electrochemical impedance spectroscopy revealed lower charge transfer resistance in the prepared materials. We demonstrate the potential of extreme biomimetics for developing a new generation of nanostructured materials with 3D centimeter-scale architecture for the storage and conversion of energy generated from renewable natural sources.

Keywords

nanostructured composite extreme biomimetics spongin scaffold manganese oxide electrochemistry supercapacitor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Poznan University of Technology (Poland), Research Grant No. 03/32/DSPB/ 0706/2017 to T. Szatkowski, M. Wysokowski, and T. Jesionowski; the Ministry of Science and Higher Education, Grant No. 03/31/DSBP/0337 to K. Kopczyński, M. Graś and G. Lota; and the German Research Foundation (DFG) Grant HE 394-3 as well as the BHMZ Erich- Krueger-Foundation to H. Ehrlich. M. Wysokowski is supported by the Foundation for Polish Science (FNP)- START 097.2017.

Supplementary material

12274_2018_2008_MOESM1_ESM.pdf (1.3 mb)
Extreme biomimetics: A carbonized 3D spongin scaffold as a novel support for nanostructured manganese oxide(IV)and its electrochemical applications

References

  1. [1]
    Szatkowski, T.; Siwińska-Stefańska, K.; Wysokowski, M.; Stelling, A. L.; Joseph, Y.; Ehrlich, H.; Jesionowski, T. Immobilization of titanium(IV) oxide onto 3D spongin scaffolds of marine sponge origin according to Extreme Biomimetics principles for removal of C.I. Basic Blue 9. Biomimetics 2017, 2, 4.Google Scholar
  2. [2]
    Wysokowski, M.; Motylenko, M.; Beyer, J.; Makarova, A.; Stöcker, H.; Walter, J.; Galli, R.; Kaiser, S.; Vyalikh, D.; Bazhenov, V. V. et al. Extreme biomimetic approach for developing novel chitin-GeO2 nanocomposites with photoluminescent properties. Nano Res. 2015, 8, 2288–2301.CrossRefGoogle Scholar
  3. [3]
    Tatur, J.; Hagedoorn, P. L.; Overeijnder, M. L.; Hagen, W. R. A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. Extremophiles 2006, 10, 139–148.CrossRefGoogle Scholar
  4. [4]
    Sheng, W. Q.; Liu, J.; Liu, S. S.; Lu, Q.; Kaplan, D. L.; Zhu, H. S. One-step synthesis of biocompatible magnetite/silk fibroin core–shell nanoparticles. J. Mater. Chem. B 2014, 2, 7394–7402.CrossRefGoogle Scholar
  5. [5]
    Szatkowski, T.; Wysokowski, M.; Lota, G.; Peziak, D.; Bazhenov, V. V.; Nowaczyk, G.; Walter, J.; Molodtsov, S. L.; Stöcker, H.; Himcinschi, C. et al. Novel nanostructured hematite–spongin composite developed using an extreme biomimetic approach. RSC Adv. 2015, 5, 79031–79040.CrossRefGoogle Scholar
  6. [6]
    Pronzato, R. Sponge farming in the Mediterranean Sea: New perspectives. Mem. Queensl. Museum 1999, 44, 485–491.Google Scholar
  7. [7]
    Garrone, R. Phylogenesis of Connective Tissue: Morphological Aspects and Biosynthesis of Sponge Intercellular Matrix; Basel: New York, 1978.Google Scholar
  8. [8]
    Bergquist, P. R. Sponges; University of California Press: Berkeley, Los Angeles, 1978.Google Scholar
  9. [9]
    Louden, D.; Inderbitzin, S.; Peng, Z.; de Nys, R. Development of a new protocol for testing bath sponge quality. Aquaculture 2007, 271, 275–285.CrossRefGoogle Scholar
  10. [10]
    Szatkowski, T.; Jesionowski, T. Hydrothermal synthesis of spongin-based materials. In Extreme biomimetics; Ehrlich, H., Ed.; Springer International Publishing: Cham, 2017; pp 251–274.CrossRefGoogle Scholar
  11. [11]
    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRefGoogle Scholar
  12. [12]
    Inagaki, M.; Yang, Y.; Kang, F. Y. Carbon nanofibers prepared via electrospinning. Adv. Mater. 2012, 24, 2547–2566.CrossRefGoogle Scholar
  13. [13]
    Li, Q.; Mahmood, N.; Zhu, J. H.; Hou, Y. L.; Sun, S. H. Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 2014, 9, 668–683.CrossRefGoogle Scholar
  14. [14]
    Wu, X. L.; Wen, T.; Guo, H. L.; Yang, S. B.; Wang, X. K.; Xu, A. W. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 2013, 7, 3589–3597.CrossRefGoogle Scholar
  15. [15]
    Singhal, R.; Chung, S. H.; Manthiram, A.; Kalra, V. A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 4530–4538.CrossRefGoogle Scholar
  16. [16]
    Jeon, J. W.; Sharma, R.; Meduri, P.; Arey, B. W.; Schaef, H. T.; Lutkenhaus, J. L.; Lemmon, J. P.; Thallapally, P. K.; Nandasiri, M. I.; McGrail, B. P. et al. In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 7214–7222.CrossRefGoogle Scholar
  17. [17]
    Wissler, M. Graphite and carbon powders for electrochemical applications. J. Power Sources 2006, 156, 142–150.CrossRefGoogle Scholar
  18. [18]
    Raymundo-Piñero, E.; Leroux, F.; Béguin, F. A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv. Mater. 2006, 18, 1877–1882.CrossRefGoogle Scholar
  19. [19]
    Marsh, H.; Rodríguez-Reinoso, F. Activated Carbon; Elsevier Science: Amsterdam, 2006.CrossRefGoogle Scholar
  20. [20]
    Ishimaru, K.; Hata, T.; Bronsveld, P.; Meier, D.; Imamura, Y. Spectroscopic analysis of carbonization behavior of wood, cellulose and lignin. J. Mater. Sci. 2007, 42, 122–129.CrossRefGoogle Scholar
  21. [21]
    Deng, L. B.; Young, R. J.; Kinloch, I. A.; Abdelkader, A. M.; Holmes, S. M.; De Haro-Del Rio, D. A.; Eichhorn, S. J. Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl. Mater. Interfaces 2013, 5, 9983–9990.CrossRefGoogle Scholar
  22. [22]
    Cho, S. Y.; Yun, Y. S.; Jin, H. J. Carbon nanofibers prepared by the carbonization of self-assembled cellulose nanocrystals. Macromol. Res. 2014, 22, 753–756.CrossRefGoogle Scholar
  23. [23]
    Cho, H. E.; Seo, S. J.; Khil, M. S.; Kim, H. Preparation of carbon nanoweb from cellulose nanowhisker. Fibers Polym. 2015, 16, 271–275.CrossRefGoogle Scholar
  24. [24]
    Li, Y. M.; Cui, D. X.; Tong, Y. J.; Xu, L. H. Study on structure and thermal stability properties of lignin during thermostabilization and carbonization. Int. J. Biol. Macromol. 2013, 62, 663–669.CrossRefGoogle Scholar
  25. [25]
    Foston, M.; Nunnery, G. A.; Meng, X. Z.; Sun, Q. N.; Baker, F. S.; Ragauskas, A. NMR a critical tool to study the production of carbon fiber from lignin. Carbon 2013, 52, 65–73.CrossRefGoogle Scholar
  26. [26]
    Sebbahi, S.; Ahmido, A.; Kifani-Sahban, F.; El Hajjaji, S.; Zoulalian, A. Preoxidation and activation of the lignin char: Carbonization and oxidation procedures. J. Eng. 2014, 2014, 972897.CrossRefGoogle Scholar
  27. [27]
    Cao, J.; Xiao, G.; Xu, X.; Shen, D. K.; Jin, B. S. Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor. Fuel Process. Technol. 2013, 106, 41–47.CrossRefGoogle Scholar
  28. [28]
    Snowdon, M. R.; Mohanty, A. K.; Misra, M. A study of carbonized lignin as an alternative to carbon black. ACS Sustain. Chem. Eng. 2014, 2, 1257–1263.CrossRefGoogle Scholar
  29. [29]
    Nogi, M.; Kurosaki, F.; Yano, H.; Takano, M. Preparation of nanofibrillar carbon from chitin nanofibers. Carbohydr. Polym. 2010, 81, 919–924.CrossRefGoogle Scholar
  30. [30]
    Nguyen, T. D.; Shopsowitz, K. E.; MacLachlan, M. J. Mesoporous nitrogen-doped carbon from nanocrystalline chitin assemblies. J. Mater. Chem. A 2014, 2, 5915–5921.CrossRefGoogle Scholar
  31. [31]
    Gao, Y. J.; Chen, X.; Zhang, J. G.; Yan, N. Chitin-derived mesoporous, nitrogen-containing carbon for heavy-metal removal and styrene epoxidation. ChemPlusChem 2015, 80, 1556–1564.CrossRefGoogle Scholar
  32. [32]
    Nata, I. F.; Wang, S. S. S.; Wu, T. M.; Lee, C. K. Carbonaceous hydrogels based on hydrothermal carbonization of glucose with chitin nanofibers. Soft Matter 2012, 8 (13), 3522–3525.CrossRefGoogle Scholar
  33. [33]
    Qian, W. J.; Sun, F. X.; Xu, Y. H.; Qiu, L. H.; Liu, C. H.; Wang, S. D.; Yan, F. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 2014, 7, 379–386.CrossRefGoogle Scholar
  34. [34]
    Belarmino, D. D.; Ladchumananandasivam, R.; Belarmino, L. D.; de M. Pimentel, J. R.; da Rocha, B. G.; Galvão, A. O.; de Andrade, S. M. B. Physical and morphological structure of chicken feathers (keratin biofiber) in natural, chemically and thermally modified forms. Mater. Sci. Appl. 2012, 3, 887–893.Google Scholar
  35. [35]
    Chen, W.; Liu, X.; He, R. L.; Lin, T.; Zeng, Q. F.; Wang, X. G. Activated carbon powders from wool fibers. Powder Technol. 2013, 234, 76–83.CrossRefGoogle Scholar
  36. [36]
    Ogata, F.; Tominaga, H.; Kangawa, M.; Inoue1, K.; Kawasaki, N. Adsorption capacity of Cu(II) and Pb(II) onto carbon fiber produced from wool. J. Oleo Sci. 2012, 61, 149–154.CrossRefGoogle Scholar
  37. [37]
    Cho, S. Y.; Yun, Y. S.; Lee, S.; Jang, D.; Park, K. Y.; Kim, J. K.; Kim, B. H.; Kang, K.; Kaplan, D. L.; Jin, H. J. Carbonization of a stable ß-sheet-rich silk protein into a pseudographitic pyroprotein. Nat. Commun. 2015, 6, 7145.CrossRefGoogle Scholar
  38. [38]
    Zhang, J. W.; Cai, Y. R.; Zhong, Q. W.; Lai, D. Z.; Yao, J. M. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium–sulfur batteries. Nanoscale 2015, 7, 17791–17797.CrossRefGoogle Scholar
  39. [39]
    Lee, Y. H.; Lee, Y. F.; Chang, K. H.; Hu, C. C. Synthesis of N-doped carbon nanosheets from collagen for electrochemical energy storage/conversion systems. Electrochem. Commun. 2011, 13, 50–53.CrossRefGoogle Scholar
  40. [40]
    Lee, Y. H.; Li, F.; Chang, K. H.; Hu, C. C.; Ohsaka, T. Novel synthesis of N-doped porous carbons from collagen for electrocatalytic production of H2O2. Appl. Catal. B Environ. 2012, 126, 208–214.CrossRefGoogle Scholar
  41. [41]
    Deng, D. H.; Liao, X. P.; Shi, B. Synthesis of porous carbon fibers from collagen fiber. ChemSusChem 2008, 1, 298–301.CrossRefGoogle Scholar
  42. [42]
    Park, M.; Ryu, J.; Kim, Y.; Cho, J. Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: A highly efficient electrocatalyst for all-vanadium redox flow batteries. Energy Environ. Sci. 2014, 7, 3727–3735.CrossRefGoogle Scholar
  43. [43]
    Alatalo, S. M.; Qiu, K. P.; Preuss, K.; Marinovic, A.; Sevilla, M.; Sillanpää, M.; Guo, X.; Titirici, M. M. Soy protein directed hydrothermal synthesis of porous carbon aerogels for electrocatalytic oxygen reduction. Carbon 2016, 96, 622–630.CrossRefGoogle Scholar
  44. [44]
    Ji, H. X.; Zhao, X.; Qiao, Z. H.; Jung, J.; Zhu, Y. W.; Lu, Y. L.; Zhang, L. L.; MacDonald, A. H.; Ruoff, R. S. Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 2014, 5, 3317.CrossRefGoogle Scholar
  45. [45]
    Griffin, J. M.; Forse, A. C.; Tsai, W. Y.; Taberna, P. L.; Simon, P.; Grey, C. P. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 2015, 14, 812–819.CrossRefGoogle Scholar
  46. [46]
    Frackowiak, E. Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 2007, 9, 1774–1785.CrossRefGoogle Scholar
  47. [47]
    Subramanian, V.; Zhu, H. W.; Vajtai, R.; Ajayan, P. M.; Wei, B. Q. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 2005, 109, 20207–20214.CrossRefGoogle Scholar
  48. [48]
    Al-Enizi, A. M.; Elzatahry, A. A.; Abdullah, A. M.; AlMaadeed, M. A.; Wang, J. X.; Zhao, D. Y.; Al-Deyab, S. Synthesis and electrochemical properties of nickel oxide/carbon nanofiber composites. Carbon 2014, 71, 276–283.CrossRefGoogle Scholar
  49. [49]
    Luan, F.; Wang, G. M.; Ling, Y. C.; Lu, X. H.; Wang, H. Y.; Tong, Y. X.; Liu, X. X.; Li, Y. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 2013, 5, 7984–7990.CrossRefGoogle Scholar
  50. [50]
    Gao, F.; Wei, Q.; Yang, J. X.; Bi, H.; Wang, M. T. Synthesis of graphene/nickel oxide composite with improved electrochemical performance in capacitors. Ionics 2013, 19, 1883–1889.CrossRefGoogle Scholar
  51. [51]
    Rakhi, R. B.; Chen, W.; Cha, D.; Alshareef, H. N. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 2012, 12, 2559–2567.CrossRefGoogle Scholar
  52. [52]
    Wang, X.; Han, X. D.; Lim, M. F.; Singh, N.; Gan, C. L.; Jan, M.; Lee, P. S. Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application. J. Phys. Chem. C 2012, 116, 12448–12454.CrossRefGoogle Scholar
  53. [53]
    Chang, S. K.; Zainal, Z.; Tan, K. B.; Yusof, N. A.; Yusoff, W. M. D. W.; Prabaharan, S. R. S. Nickel–cobalt oxide/activated carbon composite electrodes for electrochemical capacitors. Curr. Appl. Phys. 2012, 12, 1421–1428.CrossRefGoogle Scholar
  54. [54]
    Hsieh, C. T.; Lee, W. Y.; Lee, C. E.; Teng, H. Electrochemical capacitors fabricated with tin oxide/graphene oxide nanocomposites. J. Phys. Chem. C 2014, 118, 15146–15153.CrossRefGoogle Scholar
  55. [55]
    Puppa, L. D.; Komárek, M.; Bordas, F.; Bollinger, J. C.; Joussein, E. Adsorption of copper, cadmium, lead and zinc onto a synthetic manganese oxide. J. Colloid Interface Sci. 2013, 399, 99–106.CrossRefGoogle Scholar
  56. [56]
    Duan, L. A.; Sun, B. Z.; Wei, M. Y.; Luo, S. L.; Pan, F.; Xu, A. H.; Li, X. X. Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation. J. Hazard. Mater. 2015, 285, 356–365.CrossRefGoogle Scholar
  57. [57]
    Kuo, C. H.; Mosa, I. M.; Poyraz, A. S.; Biswas, S.; El-Sawy, A. M.; Song, W. Q.; Luo, Z.; Chen, S. Y.; Rusling, J. F.; He, J. et al. Robust mesoporous manganese oxide catalysts for water oxidation. ACS Catal. 2015, 5, 1693–1699.CrossRefGoogle Scholar
  58. [58]
    Wei, W. F.; Cui, X. W.; Chen, W. X.; Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721.CrossRefGoogle Scholar
  59. [59]
    Liu, X. D.; Chen, C. Z.; Zhao, Y. Y.; Jia, B. A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J. Nanomater. 2013, 2013, 736375.Google Scholar
  60. [60]
    Truong, T. T.; Liu, Y. Z.; Ren, Y.; Trahey, L.; Sun, Y. G. Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium–air batteries. ACS Nano 2012, 6, 8067–8077.CrossRefGoogle Scholar
  61. [61]
    Reddy, A. L. M.; Shaijumon, M. M.; Gowda, S. R.; Ajayan, P. M. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 2009, 9, 1002–1006.CrossRefGoogle Scholar
  62. [62]
    Xia, H.; Wang, Y.; Lin, J. Y.; Lu, L. Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors. Nanoscale Res. Lett. 2012, 7, 33.CrossRefGoogle Scholar
  63. [63]
    Ahmed, K. A. M.; Huang, K. X. Synthesis, characterization and catalytic activity of birnessite type potassium manganese oxide nanotubes and nanorods. Mater. Chem. Phys. 2012, 133, 605–610.CrossRefGoogle Scholar
  64. [64]
    Yu, M. H.; Zhai, T.; Lu, X. H.; Chen, X. J.; Xie, S. L.; Li, W.; Liang, C. L.; Zhao, W. X.; Zhang, L. P.; Tong, Y. X. Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors. J. Power Sources 2013, 239, 64–71.CrossRefGoogle Scholar
  65. [65]
    Yousefi, T.; Davarkhah, R.; Golikand, A. N.; Mashhadizadeh, M. H. Synthesis, characterization, and supercapacitor studies of manganese (IV) oxide nanowires. Mater. Sci. Semicond. Process. 2013, 16, 868–876.CrossRefGoogle Scholar
  66. [66]
    Liu, Z. P.; Ma, R. Z.; Ebina, Y.; Takada, K.; Sasaki, T. Synthesis and delamination of layered manganese oxide nanobelts. Chem. Mater. 2007, 19, 6504–6512.CrossRefGoogle Scholar
  67. [67]
    Zhao, G. X.; Li, J. X.; Jiang, L.; Dong, H. L.; Wang, X. K.; Hu, W. P. Synthesizing MnO2 nanosheets from graphene oxide templates for high performance pseudosupercapacitors. Chem. Sci. 2012, 3, 433–437.CrossRefGoogle Scholar
  68. [68]
    Inamdar, A. I.; Jo, Y.; Kim, J.; Han, J.; Pawar, S. M.; Kalubarme, R. S.; Park, C. J.; Hong, J. P.; Park, Y. S.; Jung, W. et al. Synthesis and enhanced electrochemical supercapacitive properties of manganese oxide nanoflake electrodes. Energy 2015, 83, 532–538.CrossRefGoogle Scholar
  69. [69]
    Dang, L. Y.; Wei, C. Z.; Ma, H. F.; Lu, Q. Y.; Gao, F. Three-dimensional honeycomb-like networks of birnessite manganese oxide assembled by ultrathin two-dimensional nanosheets with enhanced Li-ion battery performances. Nanoscale 2015, 7, 8101–8109.CrossRefGoogle Scholar
  70. [70]
    Ma, J. P.; Cheng, Q. L.; Pavlinek, V.; Saha, P.; Li, C. Z. Morphology-controllable synthesis of MnO2 hollow nanospheres and their supercapacitive performance. New J. Chem. 2013, 37, 722–728.CrossRefGoogle Scholar
  71. [71]
    Li, Q.; Sun, X.; Lozano, K.; Mao, Y. B. Asymmetric supercapacitors with dominant pseudocapacitance based on manganese oxide nanoflowers in a neutral aqueous electrolyte. RSC Adv. 2013, 3, 24886–24890.CrossRefGoogle Scholar
  72. [72]
    Zhang, L. L.; Wei, T. X.; Wang, W. J.; Zhao, X. S. Manganese oxide-carbon composite as supercapacitor electrode materials. Microporous Mesoporous Mater. 2009, 123, 260–267.CrossRefGoogle Scholar
  73. [73]
    Ma, S. B.; Ahn, K. Y.; Lee, E. S.; Oh, K. H.; Kim, K. B. Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes. Carbon 2007, 45, 375–382.CrossRefGoogle Scholar
  74. [74]
    Lee, H. M.; Jeong, G. H.; Kang, D. W.; Kim, S. W.; Kim, C. K. Direct and environmentally benign synthesis of manganese oxide/graphene composites from graphite for electrochemical capacitors. J. Power Sources 2015, 281, 44–48.CrossRefGoogle Scholar
  75. [75]
    Zhao, X.; Zhang, L. L.; Murali, S.; Stoller, M. D.; Zhang, Q. H.; Zhu, Y. W.; Ruoff, R. S. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 2012, 6, 5404–5412.CrossRefGoogle Scholar
  76. [76]
    Ma, S. B.; Kim, K. B. Manganese oxide/carbon nanotube nanocomposites for electrochemical energy storage applications. In Nanotechnology in advanced electrochemical power sources; Prabaharan, S. R. S., Michael, M. S., Eds.; CRC Press: Boca Raton, Florida, 2013; pp 281–316.Google Scholar
  77. [77]
    Xue, T.; Xu, C. L.; Zhao, D. D.; Li, X. H.; Li, H. L. Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates. J. Power Sources 2007, 164, 953–958.CrossRefGoogle Scholar
  78. [78]
    Wang, N.; Gao, Y.; Gong, J.; Ma, X. Y.; Zhang, X. L.; Guo, Y. H.; Qu, L. Y. Synthesis of manganese oxide hollow urchins with a reactive template of carbon spheres. Eur. J. Inorg. Chem. 2008, 2008, 3827–3832.CrossRefGoogle Scholar
  79. [79]
    Giovanoli, R.; Stähli, E.; Feitknecht, W. Über oxidhydroxide des vierwertigen mangans mit schichtengitter. 1. Mitteilung. natriummangan (II, III)manganat(IV). Helv. Chim. Acta 1970, 53, 209–220.CrossRefGoogle Scholar
  80. [80]
    Kurata, H.; Colliex, C. Electron-energy-loss core-edge structures in manganese oxides. Phys. Rev. B Condens Matter. 1993, 48, 2102–2108.CrossRefGoogle Scholar
  81. [81]
    Laffont, L.; Gibot, P. High resolution electron energy loss spectroscopy of manganese oxides: Application to Mn3O4 nanoparticles. Mater. Charact. 2010, 61, 1268–1273.CrossRefGoogle Scholar
  82. [82]
    Estradé, S.; Yedra, L.; López-Ortega, A.; Estrader, M.; Salazar-Alvarez, G.; Baró, M. D.; Nogués, J.; Peiró, F. Distinguishing the core from the shell in MnOx/MnOy and FeOx/MnOx core/shell nanoparticles through quantitative electron energy loss spectroscopy (EELS) analysis. Micron 2012, 43, 30–36.CrossRefGoogle Scholar
  83. [83]
    Paterson, J. H.; Krivanek, O. L. Elnes of 3D transition-metal oxides: II. Variations with oxidation state and crystal structure. Ultramicroscopy 1990, 32, 319–325.Google Scholar
  84. [84]
    Rask, J. H.; Miner, B. A.; Buseck, P. R. Determination of manganese oxidation states in solids by electron energy-loss spectroscopy. Ultramicroscopy 1987, 21, 321–326.CrossRefGoogle Scholar
  85. [85]
    Manoubi, T.; Tencé, M.; Walls, M. G.; Colliex, C. Curve fitting methods for quantitative analysis in electron energy loss spectroscopy. Microsc. Microanal. Microstruct. 1990, 1, 23–39.CrossRefGoogle Scholar
  86. [86]
    Oku, M.; Hirokawa, K.; Ikeda, S. X-ray photoelectron spectroscopy of manganese—oxygen systems. J. Electron Spectros. Relat. Phenomena 1975, 7, 465–473.CrossRefGoogle Scholar
  87. [87]
    Nesbitt, H. W.; Banerjee, D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Mineral. 1998, 83, 305–315.CrossRefGoogle Scholar
  88. [88]
    Liang, Y. R.; Wu, D. C.; Fu, R. W. Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer. Sci. Rep. 2013, 3, 1119.CrossRefGoogle Scholar
  89. [89]
    Li, Z.; Zhang, L.; Amirkhiz, B. S.; Tan, X. H.; Xu, Z. W.; Wang, H. L.; Olsen, B. C.; Holt, C. M. B.; Mitlin, D. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2012, 2, 431–437.CrossRefGoogle Scholar
  90. [90]
    Yun, Y. S.; Cho, S. Y.; Shim, J.; Kim, B. H.; Chang, S. J.; Baek, S. J.; Huh, Y. S.; Tak, Y.; Park, Y. W.; Park, S. et al. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 2013, 25, 1993–1998.CrossRefGoogle Scholar
  91. [91]
    Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.CrossRefGoogle Scholar
  92. [92]
    Shukla, A. K.; Krüger, P.; Dhaka, R. S.; Sayago, D. I.; Horn, K.; Barman, S. R. Understanding the 2p core-level spectra of manganese: Photoelectron spectroscopy experiments and Anderson impurity model calculations. Phys. Rev. B 2007, 75, 235419.CrossRefGoogle Scholar
  93. [93]
    Seyama, H.; Tani, Y.; Miyata, N.; Soma, M.; Iwahori, K. Characterization of pebble surfaces coated with biogenic manganese oxides by SIMS, XPS and SEM. Appl. Surf. Sci. 2008, 255, 1509–1511.CrossRefGoogle Scholar
  94. [94]
    Molenda, J.; Marzec, J.; Swierczek, K.; Ojczyk, W.; Ziemnicki, M.; Molenda, M.; Drozdek, M.; Dziembaj, R. The effect of 3D substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel. Solid State Ionics 2004, 171, 215–227.CrossRefGoogle Scholar
  95. [95]
    Jiang, J. H.; Kucernak, A. Electrochemical supercapacitor material based on manganese oxide: Preparation and characterization. Electrochim. Acta 2002, 47, 2381–2386.CrossRefGoogle Scholar
  96. [96]
    Gardner, S. D.; Singamsetty, C. S. K.; Booth, G. L.; He, G. R.; Pittman Jr, C. U. Surface characterization of carbon fibers using angle-resolved XPS and ISS. Carbon 1995, 33, 587–595.CrossRefGoogle Scholar
  97. [97]
    Yang, D. X.; Velamakannia, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr, C. A. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47, 145–152.CrossRefGoogle Scholar
  98. [98]
    Scalese, S.; Mirabella, S.; Terrasi, A. XPS and RBS investigations of Si-Er-O interactions on a Si(1 0 0)-2x1 surface. Appl. Surf. Sci. 2003, 220, 231–237.CrossRefGoogle Scholar
  99. [99]
    Abbas, Q.; Ratajczak, P.; Babuchowska, P.; Le Comte, A.; Bélanger, D.; Brousse, T.; Béguin, F. Strategies to improve the performance of carbon/carbon capacitors in salt aqueous electrolytes. J. Electrochem. Soc. 2015, 162, A5148–A5157.CrossRefGoogle Scholar
  100. [100]
    Winter, M.; Brodd R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4240.CrossRefGoogle Scholar
  101. [101]
    Acznik, I.; Lota, K.; Sierczynska, A.; Lota, G. Carbon-supported manganese dioxide as electrode material for asymmetric electrochemical capacitors. Int. J. Electrochem. Sci. 2014, 9, 2518–2534.Google Scholar
  102. [102]
    Malak-Polaczyk, A.; Matei-Ghimbeu, C.; Vix-Guterl, C.; Frackowiak, E. Carbon/λ-MnO2 composites for supercapacitor electrodes. J. Solid State Chem. 2010, 183, 969–974.CrossRefGoogle Scholar
  103. [103]
    Patel, M. N.; Wang, X. Q.; Wilson, B.; Ferrer, D. A.; Dai, S.; Stevenson, K. J.; Johnston, K. P. Hybrid MnO2–disordered mesoporous carbon nanocomposites: Synthesis and characterization as electrochemical pseudocapacitor electrodes. J. Mater. Chem. 2010, 20, 390–398.CrossRefGoogle Scholar
  104. [104]
    Chen, Q.; Meng, Y. N.; Hu, C. G.; Zhao, Y.; Shao, H. B.; Chen, N.; Qu, L. T. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J. Power Sources 2014, 247, 32–39.CrossRefGoogle Scholar
  105. [105]
    Gambou-Bosca, A.; Bélanger, D. Effect of the formulation of the electrode on the pore texture and electrochemical performance of the manganese dioxide-based electrode for application in a hybrid electrochemical capacitor. J. Mater. Chem. A 2014, 2, 6463–6473.CrossRefGoogle Scholar
  106. [106]
    Deng, L. J.; Hao, Z. P.; Wang, J. F.; Zhu, G.; Kang, L. P.; Liu, Z. H.; Yang, Z. P.; Wang, Z. L. Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor. Electrochim. Acta 2013, 89, 191–198.CrossRefGoogle Scholar
  107. [107]
    Kötz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 2000, 45, 2483–2498.CrossRefGoogle Scholar
  108. [108]
    Wang, T.; Zhu, J.; Chen, Y.; Yang, H. G.; Qin, Y.; Li, F.; Cheng, Q. F.; Yu, X. Z.; Xu, Z.; Lu, B. A. Large-scale production of silicon nanoparticles@graphene embedded in nanotubes as ultra-robust battery anodes. J. Mater. Chem. A 2017, 5, 4809–4817.CrossRefGoogle Scholar
  109. [109]
    Zhu, J.; Xu, Z.; Lu, B. A. Ultrafine Au nanoparticles decorated NiCo2O4 nanotubes as anode material for high- performance supercapacitor and lithium-ion battery applications. Nano Energy 2014, 7, 114–123.CrossRefGoogle Scholar
  110. [110]
    Li, L.; Qin, Z. Y.; Wang, L. F.; Liu, H. J.; Zhu, M. F. Anchoring alpha-manganese oxide nanocrystallites on multi-walled carbon nanotubes as electrode materials for supercapacitor. J. Nanoparticle Res. 2010, 12, 2349–2353.CrossRefGoogle Scholar
  111. [111]
    Toupin, M.; Brousse, T.; Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tomasz Szatkowski
    • 1
  • Kacper Kopczyński
    • 2
  • Mykhailo Motylenko
    • 3
  • Horst Borrmann
    • 4
  • Beata Mania
    • 1
  • Małgorzata Graś
    • 2
  • Grzegorz Lota
    • 2
  • Vasilii V. Bazhenov
    • 5
    • 6
  • David Rafaja
    • 3
  • Friedrich Roth
    • 5
  • Juliane Weise
    • 5
  • Enrico Langer
    • 7
  • Marcin Wysokowski
    • 1
  • Sonia Żółtowska-Aksamitowska
    • 1
  • Iaroslav Petrenko
    • 5
  • Serguei L. Molodtsov
    • 5
    • 6
    • 8
  • Jana Hubálková
    • 9
  • Christos G. Aneziris
    • 9
  • Yvonne Joseph
    • 10
  • Allison L. Stelling
    • 11
  • Hermann Ehrlich
    • 5
  • Teofil Jesionowski
    • 1
  1. 1.Institute of Chemical Technology and Engineering, Faculty of Chemical TechnologyPoznan University of TechnologyPoznanPoland
  2. 2.Institute of Chemistry and Technical ElectrochemistryPoznan University of TechnologyPoznanPoland
  3. 3.Institute of Materials ScienceTU Bergakademie FreibergFreibergGermany
  4. 4.Max Planck Institute for Chemical Physics of SolidsDresdenGermany
  5. 5.Institute of Experimental PhysicsTU Bergakademie FreibergFreibergGermany
  6. 6.European X-Ray Free-Electron Laser Facility (XFEL) GmbHSchenefeldGermany
  7. 7.Institute of Semiconductors and Microsystems, Polymere MikrosystemeTU DresdenDresdenGermany
  8. 8.Saint-Petersburg National Research University of Information Technologies, Mechanics and OpticsITMO UniversitySt. PetersburgRussia
  9. 9.Institute of Ceramic, Glass and Constructions MaterialsTU BergakademieFreibergGermany
  10. 10.Institute of Electronics and Sensor MaterialsTU Bergakademie FreibergFreibergGermany
  11. 11.Department of BiochemistryDuke University Medical SchoolDurhamUSA

Personalised recommendations