Nano Research

, Volume 11, Issue 6, pp 3462–3468 | Cite as

Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production

  • Chao Zhou
  • Run Shi
  • Lu Shang
  • Li-Zhu Wu
  • Chen-Ho Tung
  • Tierui Zhang
Research Article


A template-free hydrothermal-assisted thermal polymerization method has been developed for the large-scale synthesis of one-dimensional (1D) graphitic carbonnitride (g-C3N4) microtubes. The g-C3N4 microtubes were obtained by simple thermal polymerization of melamine-cyanuric acid complex microrods under N2 atmosphere, which were synthesized by hydrothermal treatment of melamine solution at 180 °C for 24 h. The as-obtained g-C3N4microtubes exhibited a large surface area and a unique one-dimensional tubular structure, which provided abundant active sites for proton reduction and also facilitated the electron transfer processes. As such, the g-C3N4 microtubes showed enhanced photocatalytic H2 productionactivity in lactic acid aqueous solutions under visible light irradiation (λ ≥ 420 nm), which was ∼ 3.1 times higher than that of bulk g-C3N4 prepared by direct thermal polymerization of the melamine precursor under the same calcination conditions.


g-C3N4 microtubes photocatalytic water splitting visible light response 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Basic Research Program of China (No. 2014CB239402), the National Key Projects for Fundamental Research and Development of China (Nos. 2016YFB0600901, 2017YFA0206904, and 2017YFA0206900), the National Natural Science Foundation of China (Nos. 51772305, 51572270, U1662118, and 21401207), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17000000), and the Youth Innovation Promotion Association of the CAS.

Supplementary material

12274_2018_2003_MOESM1_ESM.pdf (774 kb)
Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production


  1. [1]
    Liu, J.; Liu, Y; Liu, N. Y; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.CrossRefGoogle Scholar
  2. [2]
    Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G; Carlsson J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.CrossRefGoogle Scholar
  3. [3]
    Yu, H. J.; Shi, R.; Zhao, Y X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L.-Z. Tung, C.-H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.CrossRefGoogle Scholar
  4. [4]
    Zhu, M. S.; Kim, S.; Mao, L.; Fujitsuka, M.; Zhang, J. Y; Wang, X. C.; Majima, T. Metal-free photocatalyst for H2 evolution in visible to near-infrared region: Black phosphorus/graphitic carbon nitride. J. Am. Chem. Soc. 2017, 139, 13234–13242.CrossRefGoogle Scholar
  5. [5]
    Zhang, G G.; Li, G. S.; Lan, Z. A.; Lin, L. H.; Savateev, A.; Heil, T.; Zafeiratos, S.; Wang, X. C.; Antonietti, M. Optimizing optical absorption, exciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity. Angew. Chem, Int. Ed 2017, 56, 13445–13449.CrossRefGoogle Scholar
  6. [6]
    Liu, C. Y; Huang, H. W.; Ye, L. Q.; Yu, S. X.; Tian, N.; Du, X.; Zhang, T. R.; Zhang, Y. H. Intermediate-mediated strategy to horn-like hollow mesoporous ultrathin g-C3N4 tube with spatial anisotropic charge separation for superior photocatalytic H2 evolution. Nano Energy 2017, 41, 738–748.CrossRefGoogle Scholar
  7. [7]
    Li, C. M.; Du, Y H.; Wang, D. P.; Yin, S. M.; Tu, W. G.; Chen, Z.; Kraft, M.; Chen, G; Xu, R. Unique P-Co-N surface bonding states constructed on g-C3N4 nanosheets for drastically enhanced photocatalytic activity of H2 evolution. Adv. Funct. Mater. 2017, 27, 1604328.CrossRefGoogle Scholar
  8. [8]
    Niu, P.; Yin, L. C.; Yang, Y Q.; Liu, G.; Cheng, H. M. Increasing the visible light absorption of graphitic carbon nitride (Melon) photocatalysts by homogeneous self-modification with nitrogen vacancies. Adv. Mater. 2014, 26, 8046–8052.CrossRefGoogle Scholar
  9. [9]
    Bai, S.; Wang, X. J.; Hu, C. Y.; Xie, M. L.; Jiang, J.; Xiong, Y. J. Two-dimensional g-C3N4: An ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chem. Commun. 2014, 50, 6094–6096.CrossRefGoogle Scholar
  10. [10]
    Chen, X. F.; Zhang, J. S.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 2009, 131, 11658–11659.CrossRefGoogle Scholar
  11. [11]
    Niu, P.; Zhang, L. L.; Liu, G; Chen, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.CrossRefGoogle Scholar
  12. [12]
    Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452–2456.CrossRefGoogle Scholar
  13. [13]
    Zhao, Y; Zhao, F.; Wang, X. P.; Xu, C. Y.; Zhang, Z. P.; Shi, G. Q.; Qu, L. T. Graphitic carbon nitride nanoribbons: Grapheneassisted formation and synergic function for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 1393413939.Google Scholar
  14. [14]
    Sun, J. H.; Zhang, J. S.; Zhang, M. W.; Antonietti, M.; Fu, X. Z.; Wang, X. C. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun. 2012, 3, 1139.CrossRefGoogle Scholar
  15. [15]
    Zhang, Y. H.; Pan, Q. W.; Chai, G. Q.; Liang, M. R.; Dong, G. P.; Zhang, Q. Y.; Qiu, J. R. Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 2013, 3, 1943.CrossRefGoogle Scholar
  16. [16]
    Bai, X. J.; Wang, L.; Zong, R. L.; Zhu, Y F. Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J. Phys. Chem. C 2013, 117, 9952–9961.CrossRefGoogle Scholar
  17. [17]
    Tahir, M.; Cao, C. B.; Mahmood, N.; Butt, F. K.; Mahmood, A.; Idrees, F.; Hussain, S.; Tanveer, M.; Ali, Z.; Aslam, I. Multifunctional g-C3N4 nanofibers: A template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACSAppl. Mater. Interfaces 2014, 6, 1258–1265.CrossRefGoogle Scholar
  18. [18]
    Li, J.; Cao, C. B.; Zhu, H. S. Synthesis and characterization of graphite-like carbon nitride nanobelts and nanotubes. Nanotechnology 2007, 18, 115605.CrossRefGoogle Scholar
  19. [19]
    Guo, Q. X.; Xie, Y; Wang, X. J.; Zhang, S. Y; Hou. T.; Lv, S. C. Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures. Chem. Commun. 2004, 26–27.Google Scholar
  20. [20]
    Wang, S. P.; Li, C. J.; Wang, T.; Zhang, P.; Li, A.; Gong, J. L. Controllable synthesis of nanotube-type graphitic C3N4 and their visible-light photocatalytic and fluorescent properties. J Mater. Chem. A 2014, 2, 2885–2890.CrossRefGoogle Scholar
  21. [21]
    Tahir, M.; Cao, C. B.; Butt, F. K.; Idrees, F.; Mahmood, N.; Ali, Z.; Aslam, I.; Tanveer, M.; Rizwan, M.; Mahood, T. Tubular graphitic-C3N4: A prospective material for energy storage and green photocatalysis. J. Mater. Chem. A 2013, 1, 13949–13955.CrossRefGoogle Scholar
  22. [22]
    Lee, K.; Mazare, A.; Schmuki, P. One-dimensional titanium dioxide nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 93859454.Google Scholar
  23. [23]
    Zhang, H. J.; Zuo, X. Q.; Tang, H. B.; Li, G; Zhou, Z. Origin of photoactivity in graphitic carbon nitride and strategies for enhancement of photocatalytic efficiency: Insights from firstprinciples computations. Phys. Chem. Chem. Phys. 2015, 17, 62806288.Google Scholar
  24. [24]
    Gracia, J.; Kroll, P. First principles study of C3N4 carbon nitride nanotubes. J. Mater. Chem. 2009, 19, 3020–3026.CrossRefGoogle Scholar
  25. [25]
    Chai, G. L.; Lin, C. S.; Wei, J.; Zhang, M. Y; Cheng, W. D. Nonlinear optical properties of carbon nitride nanotubes. Phys. Chem. Chem. Phys. 2012, 14, 835–839.CrossRefGoogle Scholar
  26. [26]
    Pan, H.; Zhang, Y W.; Shenoy, V. B.; Gao, H. J. Ab initio study on a novel photocatalyst: Functionalized graphitic carbon nitride nanotube. ACS Catal. 2011, 1, 99–104.CrossRefGoogle Scholar
  27. [27]
    Gao, J.; Zhou, Y; Li, Z. S.; Yan, S. C.; Wang, N. Y.; Zou, Z. G. High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity. Nanoscale 2012, 4, 3687–3692.CrossRefGoogle Scholar
  28. [28]
    Cao, C. B.; Huang, F. L.; Cao, C. T.; Li, J.; Zhu, H. S. Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route. Chem. Mater. 2004, 16, 5213–5215.CrossRefGoogle Scholar
  29. [29]
    Jun, Y. S.; Lee, E. Z.; Wang, X. C.; Hong, W. H.; Stucky, G. D.; Thomas, A. From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater. 2013, 23, 3661–3667.CrossRefGoogle Scholar
  30. [30]
    Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.CrossRefGoogle Scholar
  31. [31]
    Zhang, G. G; Zang, S. H.; Wang, X. C. Layered Co(OH)2 deposited polymeric carbon nitrides for photocatalytic water oxidation. ACS Catal. 2015, 5, 941–947.CrossRefGoogle Scholar
  32. [32]
    Ong, W. J.; Putri, L. K.; Tan, Y C.; Tan, L. L.; Li, N.; Ng, Y. H.; Wen, X. M.; Chai, S. P. Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study. Nano Res. 2017, 10, 1673–1696.CrossRefGoogle Scholar
  33. [33]
    Shalom, M.; Inal, S.; Fettkenhaure, C.; Neher, D.; Antonietti, M. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J. Am. Chem. Soc. 2013, 135, 7118–7121.CrossRefGoogle Scholar
  34. [34]
    Jun, Y. S.; Park, J.; Lee, S. U.; Thomas, A.; Hong, W. H.; Stucky, G. D. Three-dimensional macroscopic assemblies of low-dimensional carbon nitrides for enhanced hydrogen evolution. Angew. Chem, Int. Ed. 2013, 52, 11083–11087.CrossRefGoogle Scholar
  35. [35]
    Guo, S. E.; Deng, Z. P.; Li, M. X.; Jiang, B. J.; Tian, C. G.; Pan, Q. J.; Fu, H. G. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 18301834.Google Scholar
  36. [36]
    Zhang, Q.; Joo, J.-B.; Lu, Z. D.; Dahl, M.; Oliveira, D. Q. L.; Ye, M. M.; Yin, Y. D. Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Res. 2011, 4, 103114.Google Scholar
  37. [37]
    Zhou, C.; Zhao, Y. F.; Bian, T.; Shang, L.; Yu, H. J.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production. Chem. Commun. 2013, 49, 9872–9874.CrossRefGoogle Scholar
  38. [38]
    Pan, B.; Zhou, Y. G.; Su, W. Y; Wang, X. X. Self-assembly synthesis of LaPO4 hierarchical hollow spheres with enhanced photocatalytic CO2-reduction performance. Nano Res. 2017, 10, 534–545.CrossRefGoogle Scholar
  39. [39]
    Zheng, Y; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 2012, 5, 6717–6731.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chao Zhou
    • 1
  • Run Shi
    • 1
    • 2
  • Lu Shang
    • 1
  • Li-Zhu Wu
    • 1
  • Chen-Ho Tung
    • 1
  • Tierui Zhang
    • 1
    • 2
  1. 1.Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations