Advertisement

Nano Research

, Volume 11, Issue 6, pp 2951–2969 | Cite as

Development, applications, and future directions of triboelectric nanogenerators

  • Mingyuan Ma
  • Zhuo Kang
  • Qingliang Liao
  • Qian Zhang
  • Fangfang Gao
  • Xuan Zhao
  • Zheng Zhang
  • Yue Zhang
Review Article

Abstract

Since the invention of the triboelectric nanogenerator (TENG) in 2012, it has become one of the most vital innovations in energy harvesting technologies. The TENG has seen enormous progress to date, particularly in applications for energy harvesting and self-powered sensing. It starts with the simple working principles of the triboelectric effect and electrostatic induction, but can scavenge almost any kind of ambient mechanical energy in our daily life into electricity. Extraordinary output performance optimization of the TENG has been achieved, with high area power density and energy conversion efficiency. Moreover, TENGs can also be utilized as self-powered active sensors to monitor many environmental parameters. This review describes the recent progress in mainstream energy harvesting and self-powered sensing research based on TENG technology. The birth and development of the TENG are introduced, following which structural designs and performance optimizations for output performance enhancement of the TENG are discussed. The major applications of the TENG as a sustainable power source or a self-powered sensor are presented. The TENG, with rationally designed structures, can convert irregular and mostly low-frequency mechanical energies from the environment, such as human motion, mechanical vibration, moving automobiles, wind, raindrops, and ocean waves. In addition, the development of self-powered active sensors for a variety of environmental simulations based on the TENG is presented. The TENG plays a great role in promoting the development of emerging Internet of Things, which can make everyday objects connect more smartly and energy-efficiently in the coming years. Finally,the future directions and perspectives of the TENG are outlined. The TENG is not only a sustainable micro-power source for small devices, but also serves as a potential macro-scale generator of power from water waves in the future.

Keywords

triboelectric nanogenerator energy harvesting self-powered sensors blue energy Internet of Things 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0202701), the Program of Introducing Talents of Discipline to Universities (No. B14003), National Natural Science Foundation of China (Nos. 51722203, 51672026, 51527802, 51372020, and 51232001), Beijing Municipal Science & Technology Commission (No. Z161100002116027), and the State Key Laboratory for Advanced Metals and Materials.

References

  1. [1]
    Hiptmair R. Finite elements in computational electromagnetism. Acta Numer. 2002, 11, 237–339.Google Scholar
  2. [2]
    Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.Google Scholar
  3. [3]
    Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.Google Scholar
  4. [4]
    Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34–39.Google Scholar
  5. [5]
    Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.Google Scholar
  6. [6]
    Zhang, Y.; Yang, Y.; Gu, Y. S.; Yan, X. Q.; Liao, Q. L.; Li, P. F.; Zhang, Z.; Wang, Z. Z. Performance and service behavior in 1-D nanostructured energy conversion devices. Nano Energy 2015, 14, 30–48.Google Scholar
  7. [7]
    Zhang, G. J.; Liao, Q. L.; Zhang, Z.; Liang, Q. J.; Zhao, Y. L.; Zheng, X.; Zhang, Y. Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose. Adv. Sci. 2016, 3, 1500257.Google Scholar
  8. [8]
    Zhang, G. J.; Liao, Q. L.; Ma, M. Y.; Zhang, Z.; Si, H. N.; Liu, S.; Zheng, X.; Ding, Y.; Zhang, Y. A rationally designed output current measurement procedure and comprehensive understanding of the output characteristics for piezoelectric nanogenerators. Nano Energy 2016, 30, 180–186.Google Scholar
  9. [9]
    Yang, Y.; Guo, W.; Wang, X. Q.; Wang, Z. Z.; Qi, J. J.; Zhang, Y. Size dependence of dielectric constant in a single pencil-like ZnO nanowire. Nano Lett. 2012, 12, 1919–1922.Google Scholar
  10. [10]
    Zhao, Y. L.; Liao, Q. L.; Zhang, G. J.; Zhang, Z.; Liang, Q. J.; Liao, X. Q.; Zhang, Y. High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy 2015, 11, 719–727.Google Scholar
  11. [11]
    Yang, Y.; Pradel, K. C.; Jing, Q. S.; Wu, J. M.; Zhang, F.; Zhou, Y. S.; Zhang, Y.; Wang, Z. L. Thermoelectric nanogenerators based on single Sb-doped ZnO micro/nanobelts. ACS Nano 2012, 6, 6984–6989.Google Scholar
  12. [12]
    Fan, F.-R.; Tian, Z.-Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.Google Scholar
  13. [13]
    Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.Google Scholar
  14. [14]
    Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.Google Scholar
  15. [15]
    Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.Google Scholar
  16. [16]
    Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C.-Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.Google Scholar
  17. [17]
    Zhang, L. M.; Xue, F.; Du, W. M.; Han, C. B.; Zhang, C.; Wang, Z. L. Transparent paper-based triboelectric nanogenerator as a page mark and anti-theft sensor. Nano Res. 2014, 7, 1215–1223.Google Scholar
  18. [18]
    Zhang, H. L.; Yang, Y.; Zhong, X. D.; Su, Y. J.; Zhou, Y. S.; Hu, C. G.; Wang, Z. L. Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS Nano 2014, 8, 680–689.Google Scholar
  19. [19]
    Yi, F.; Lin, L.; Niu, S. M.; Yang, P. K.; Wang, Z. N.; Chen, J.; Zhou, Y. S.; Zi, Y. L.; Wang, J.; Liao, Q. L. et al. Stretchable- rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors. Adv. Funct. Mater. 2015, 25, 3688–3696.Google Scholar
  20. [20]
    Yang, W. Q.; Chen, J.; Zhu, G.; Wen, X. N.; Bai, P.; Su, Y. J.; Lin, Y.; Wang, Z. L. Harvesting vibration energy by a triple- cantilever based triboelectric nanogenerator. Nano Res. 2013, 6, 880–886.Google Scholar
  21. [21]
    Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric- effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.Google Scholar
  22. [22]
    Chen, J.; Zhu, G.; Yang, W. Q.; Jing, Q. S.; Bai, P.; Yang, Y.; Hou, T.-C.; Wang, Z. L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094–6099.Google Scholar
  23. [23]
    Ma, M. Y.; Zhang, Z.; Liao, Q. L.; Yi, F.; Han, L. H.; Zhang, G. J.; Liu, S.; Liao, X. Q.; Zhang, Y. Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy 2017, 32, 389–396.Google Scholar
  24. [24]
    Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.Google Scholar
  25. [25]
    Choi, D.; Lee, S.; Park, S. M.; Cho, H.; Hwang, W.; Kim, D. S. Energy harvesting model of moving water inside a tubular system and its application of a stick-type compact triboelectric nanogenerator. Nano Res. 2015, 8, 2481–2491.Google Scholar
  26. [26]
    Zhou, Y. S.; Zhu, G.; Niu, S. M.; Liu, Y.; Bai, P.; Jing, Q. S.; Wang, Z. L. Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Adv. Mater. 2014, 26, 1719–1724.Google Scholar
  27. [27]
    Jing, Q. S.; Zhu, G.; Bai, P.; Xie, Y. N.; Chen, J.; Han, R. P. S.; Wang, Z. L. Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano 2014, 8, 3836–3842.Google Scholar
  28. [28]
    Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.Google Scholar
  29. [29]
    Zhu, G.; Lin, Z. H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.Google Scholar
  30. [30]
    Liang, Q. J.; Yan, X. Q.; Gu, Y. S.; Zhang, K.; Liang, M. Y.; Lu, S. N.; Zheng, X.; Zhang, Y. Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating. Sci. Rep. 2015, 5, 9080.Google Scholar
  31. [31]
    Yi, F.; Wang, X. F.; Niu, S. M.; Li, S. M.; Yin, Y. J.; Dai, K. R.; Zhang, G. J.; Lin, L.; Wen, Z.; Guo, H. Y. et al. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci. Adv. 2016, 2, e1501624.Google Scholar
  32. [32]
    Ma, M. Y.; Liao, Q. L.; Zhang, G. J.; Zhang, Z.; Liang, Q. J.; Zhang, Y. Self-recovering triboelectric nanogenerator as active multifunctional sensors. Adv. Funct. Mater. 2015, 25, 6489–6494.Google Scholar
  33. [33]
    Bai, P.; Zhu, G.; Jing, Q. S.; Wu, Y.; Yang, J.; Chen, J.; Ma, J. S.; Zhang, G.; Wang, Z. L. Transparent and flexible barcode based on sliding electrification for self-powered identification systems. Nano Energy 2015, 12, 278–286.Google Scholar
  34. [34]
    Zhang, H. L.; Yang, Y.; Su, Y. J.; Chen, J.; Adams, K.; Lee, S.; Hu, C. G.; Wang, Z. L. Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Adv. Funct. Mater. 2014, 24, 1401–1407.Google Scholar
  35. [35]
    Yang, P.-K.; Lin, Z.-H.; Pradel, K. C.; Lin, L.; Li, X. H.; Wen, X. N.; He, J.-H.; Wang, Z. L. Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano 2015, 9, 901–907.Google Scholar
  36. [36]
    Yang, Y.; Zhang, H. L.; Lin, Z.-H.; Zhou, Y. S.; Jing, Q. S.; Su, Y. J.; Yang, J.; Chen, J.; Hu, C. G.; Wang, Z. L. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 2013, 7, 9213–9222.Google Scholar
  37. [37]
    Han, C. B.; Zhang, C.; Tang, W.; Li, X. H.; Wang, Z. L. High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Res. 2015, 8, 722–730.Google Scholar
  38. [38]
    Zhang, C.; Tang, W.; Pang, Y. K.; Han, C. B.; Wang, Z. L. Active micro-actuators for optical modulation based on a planar sliding triboelectric nanogenerator. Adv. Mater. 2015, 27, 719–726.Google Scholar
  39. [39]
    Guo, H. Y.; Leng, Q.; He, X. M.; Wang, M. J.; Chen, J.; Hu, C. G.; Xi, Y. A triboelectric generator based on checker-like interdigital electrodes with a sandwiched PET thin film for harvesting sliding energy in all directions. Adv. Energy Mater. 2015, 5, 1400790.Google Scholar
  40. [40]
    Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.Google Scholar
  41. [41]
    Lin, L.; Wang, S. H.; Niu, S. M.; Liu, C.; Xie, Y. N.; Wang, Z. L. Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl. Mater. Interfaces 2014, 6, 3031–3038.Google Scholar
  42. [42]
    Wang, S. H.; Niu, S. M.; Yang, J.; Lin, L.; Wang, Z. L. Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. ACS Nano 2014, 8, 12004–12013.Google Scholar
  43. [43]
    Su, Y. J.; Wen, X. N.; Zhu, G.; Yang, J.; Chen, J.; Bai, P.; Wu, Z. M.; Jiang, Y. D.; Wang, Z. L. Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 2014, 9, 186–195.Google Scholar
  44. [44]
    Xia, X. N.; Chen, J.; Guo, H. Y.; Liu, G. L.; Wei, D. P.; Xi, Y.; Wang, X.; Hu, C. G. Embedding variable micro-capacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator. Nano Res. 2017, 10, 320–330.Google Scholar
  45. [45]
    Bai P.; Zhu G.; Zhou Y. S.; Wang S.; Ma, J.; Zhang G.; Wang Z. L. Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators. Nano Res. 2014, 7, 990–997.Google Scholar
  46. [46]
    Kim, S.; Gupta, M. K.; Lee, K. Y.; Sohn, A.; Kim, T. Y.; Shin, K.-S.; Kim, D.; Kim, S. K.; Lee, K. H.; Shin, H.-J. et al. Nanogenerators: Transparent flexible graphene triboelectric nanogenerators (Adv. Mater. 23/2014). Adv. Mater. 2014, 26, 3778.Google Scholar
  47. [47]
    Diaz, A. F.; Felix-Navarro, R. M. A semi-quantitative triboelectric series for polymeric materials: The influence of chemical structure and properties. J. Electrostat. 2004, 62, 277–290.Google Scholar
  48. [48]
    Shin, S.-H.; Kwon, Y. H.; Kim, Y.-H.; Jung, J.-Y.; Lee, M. H.; Nah, J. Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano 2015, 9, 4621–4627.Google Scholar
  49. [49]
    Jeong, C. K.; Baek, K. M.; Niu, S. M.; Nam, T. W.; Hur, Y. H.; Park, D. Y.; Hwang, G. T.; Byun, M.; Wang, Z. L.; Jung, Y. S. et al. Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 2014, 14, 7031–7038.Google Scholar
  50. [50]
    Vasandani, P.; Mao, Z.-H.; Jia, W. Y.; Sun, M. G. Design of simulation experiments to predict triboelectric generator output using structural parameters. Simul. Model. Pract. Th. 2016, 68, 95–107.Google Scholar
  51. [51]
    Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Liu, C.; Zhou, Y. S.; Wang, Z. L. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 2014, 26, 6720–6728.Google Scholar
  52. [52]
    Wang, S. H.; Zi, Y. L.; Zhou, Y. S.; Li, S. M.; Fan, F. R.; Lin, L.; Wang, Z. L. Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J. Mater. Chem. A 2016, 4, 3728–3734.Google Scholar
  53. [53]
    Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.Google Scholar
  54. [54]
    Yang, W. Q.; Chen, J.; Jing, Q. S.; Yang, J.; Wen, X. N.; Su, Y. J.; Zhu, G.; Bai, P.; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090–4096.Google Scholar
  55. [55]
    Zhu, G.; Zhou, Y. S.; Bai, P.; Meng, X. S.; Jing, Q. S.; Chen, J.; Wang, Z. L. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 2014, 26, 3788–3796.Google Scholar
  56. [56]
    Xie, Y. N.; Wang, S. H.; Niu, S. M.; Lin, L.; Jing, Q. S.; Yang, J.; Wu, Z. Y.; Wang, Z. L. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 2014, 26, 6599–6607.Google Scholar
  57. [57]
    Zhang, Q.; Liang, Q. J.; Zhang, Z.; Kang, Z.; Liao, Q. L.; Ding, Y.; Ma, M. Y.; Gao, F. F.; Zhao, X.; Zhang, Y. Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv. Funct. Mater. 2018, 28, 1703801.Google Scholar
  58. [58]
    Ma, M. Y.; Zhang, Z.; Liao, Q. L.; Zhang, G. J.; Gao, F. F.; Zhao, X.; Zhang, Q.; Xun, X. C.; Zhang, Z. M.; Zhang, Y. Integrated hybrid nanogenerator for gas energy recycle and purification. Nano Energy 2017, 39, 524–531.Google Scholar
  59. [59]
    Zhang, K. W.; Wang, X.; Yang, Y.; Wang, Z. L. Hybridized electromagnetic–triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics. ACS Nano 2015, 9, 3521–3529.Google Scholar
  60. [60]
    Wang, X.; Wang, S. H.; Yang, Y.; Wang, Z. L. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors. ACS Nano 2015, 9, 4553–4562.Google Scholar
  61. [61]
    Shi, B. J.; Zheng, Q.; Jiang, W.; Yan, L.; Wang, X. X.; Liu, H.; Yao, Y.; Li, Z.; Wang, Z. L. A packaged self-powered system with universal connectors based on hybridized nanogenerators. Adv. Mater. 2016, 28, 846–852.Google Scholar
  62. [62]
    Wang, J.; Li, X. H.; Zi, Y. L.; Wang, S. H.; Li, Z. L.; Zheng, L.; Yi, F.; Li, S. M.; Wang, Z. L. A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 2015, 27, 4830–4836.Google Scholar
  63. [63]
    Yi, F.; Wang, J.; Wang, X. F.; Niu, S. M.; Li, S. M.; Liao, Q. L.; Xu, Y. L.; You, Z.; Zhang, Y.; Wang, Z. L. Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics. ACS Nano 2016, 10, 6519–6525.Google Scholar
  64. [64]
    Zhang, Q.; Liang, Q. J.; Liao, Q. L.; Yi, F.; Zheng, X.; Ma, M. Y.; Gao, F. F.; Zhang, Y. Service behavior of multifunctional triboelectric nanogenerators. Adv. Mater. 2017, 29, 1606703.Google Scholar
  65. [65]
    Luo, J. J.; Fan, F. R.; Jiang, T.; Wang, Z. W.; Tang, W;. Zhang, C. P.; Liu, M. M.; Cao, G. Z.; Wang, Z. L. Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Res. 2015, 8, 3934–3943.Google Scholar
  66. [66]
    Guo, H. Y.; Yeh, M. H.; Lai, Y. C.; Zi, Y. L.; Wu, C. S.; Wen, Z.; Hu, C. G.; Wang, Z. L. All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 2016, 10, 10580–10588.Google Scholar
  67. [67]
    Quan, T.; Wu, Y. C.; Yang, Y. Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy. Nano Res. 2015, 8, 3272–3280.Google Scholar
  68. [68]
    Zhu, G.; Su, Y. J.; Bai, P.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Wang, Z. L. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 2014, 8, 6031–6037.Google Scholar
  69. [69]
    Lin, Z.-H.; Cheng, G.; Wu, W. Z.; Pradel, K. C.; Wang, Z. L. Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor. ACS Nano 2014, 8, 6440–6448.Google Scholar
  70. [70]
    Lin, Z.-H.; Cheng, G.; Lee, S.; Pradel, K. C.; Wang, Z. L. Harvesting water drop energy by a sequential contact- electrification and electrostatic-induction process. Adv. Mater. 2014, 26, 4690–4696.Google Scholar
  71. [71]
    Yang, Y.; Zhang, H. L.; Liu, R. Y.; Wen, X. N.; Hou, T.-C.; Wang, Z. L. Fully enclosed triboelectric nanogenerators for applications in water and harsh environments. Adv. Energy Mater. 2013, 3, 1563–1568.Google Scholar
  72. [72]
    Lin, Z.-H.; Cheng, G.; Lin, L.; Lee, S.; Wang, Z. L. Water-solid surface contact electrification and its use for harvesting liquid-wave1 energy. Angew. Chem., Int. Ed. 2013, 52, 12545–12549.Google Scholar
  73. [73]
    Liang, Q. J.; Yan, X. Q.; Liao, X. Q.; Cao, S. Y.; Zheng, X.; Si, H. N.; Lu, S. N.; Zhang, Y. Multi-unit hydroelectric generator based on contact electrification and its service behavior. Nano Energy 2015, 16, 329–338.Google Scholar
  74. [74]
    Liang, Q. J.; Yan, X. Q.; Liao, X. Q.; Zhang, Y. Integrated multi-unit transparent triboelectric nanogenerator harvesting rain power for driving electronics. Nano Energy 2016, 25, 18–25.Google Scholar
  75. [75]
    Cheng, G.; Lin, Z.-H.; Du, Z. L.; Wang Z. L. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS Nano 2014, 8, 1932–1939.Google Scholar
  76. [76]
    Chen, J.; Yang, J.; Li, Z. L.; Fan, X.; Zi, Y. L.; Jing, Q. S.; Guo, H. Y.; Wen, Z.; Pradel, K. C.; Niu, S. M. et al. Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy. ACS Nano 2015, 9, 3324–3331.Google Scholar
  77. [77]
    Zhang, L.; Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Tang, J. F.; Zhang, H. T.; Pan, H.; Zhu, M. H.; Yang, W. H. et al. Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv. Mater. 2016, 28, 1650–1656.Google Scholar
  78. [78]
    Zhao, Z. F.; Pu, X.; Du, C. H.; Li, L. X.; Jiang, C. Y.; Hu, W. G.; Wang, Z. L. Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano 2016, 10, 1780–1787.Google Scholar
  79. [79]
    Hu, W. W.; Wu, W. W.; Zhou, H. M. Wind-blown sand electrification inspired triboelectric energy harvesting based on homogeneous inorganic materials contact: A theoretical study and prediction. Sci. Rep. 2016, 6, 19912.Google Scholar
  80. [80]
    Wang, S. H.; Mu, X. J.; Wang, X.; Gu, A. Y.; Wang, Z. L.; Yang, Y. Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy. ACS Nano 2015, 9, 9554–9563.Google Scholar
  81. [81]
    Quan, Z. C.; Han, C. B.; Jiang, T.; Wang, Z. L. Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 2016, 6, 1501799.Google Scholar
  82. [82]
    Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z.-H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119–7125.Google Scholar
  83. [83]
    Chandrasekhar, A.; Alluri, N. R.; Sarawivanakumar, B.; Selvarajan, S.; Kim, S. J. Human interactive triboelectric nanogenerator as a self-powered smart seat. ACS Appl. Mater. Interfaces 2016, 8, 9692–9699.Google Scholar
  84. [84]
    Zhou, T.; Zhang, C.; Han, C. B.; Fan, F. R.; Tang, W.; Wang, Z. L. Woven structured triboelectric nanogenerator for wearable devices. ACS Appl. Mater. Interfaces 2014, 6, 14695–14701.Google Scholar
  85. [85]
    Kim, K. N.; Chun, J.; Kim, J. W.; Lee, K. Y.; Park, J. U.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 2015, 9, 6394–6400.Google Scholar
  86. [86]
    Meng, X. S.; Wang, Z. L.; Zhu, G. Triboelectric-potential- regulated charge transport through p-n junctions for area-scalable conversion of mechanical energy. Adv. Mater. 2016, 28, 668–676.Google Scholar
  87. [87]
    Song, P.; Kuang, S.; Panwar, N.; Yang, G.; Tng, D. J. H.; Tjin, S. C.; Ng, W. J.; Majid, M. B. A.; Zhu, G.; Yong, K.-T. et al. A self-powered implantable drug-delivery system using biokinetic energy. Adv. Mater. 2017, 29, 1605668.Google Scholar
  88. [88]
    Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.Google Scholar
  89. [89]
    Niu, S. M.; Wang, X. F.; Yi, F.; Zhou, Y. S.; Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975.Google Scholar
  90. [90]
    Liang, Q. J.; Zhang, Q.; Yan, X. Q.; Liao, X. Q.; Han, L. H.; Yi, F.; Ma, M. Y.; Zhang, Y. Recyclable and green triboelectric nanogenerator. Adv. Mater. 2017, 29, 1604961.Google Scholar
  91. [91]
    Yang, Y.; Zhang, H. L.; Zhong, X. D.; Yi, F.; Yu, R. M.; Zhang, Y.; Wang, Z. L. Electret film-enhanced triboelectric nanogenerator matrix for self-powered instantaneous tactile imaging. ACS Appl. Mater. Interfaces 2014, 6, 3680–3688.Google Scholar
  92. [92]
    Wang, S. H.; Mu, X. J.; Yang, Y.; Sun, C. L.; Gu, A. Y.; Wang, Z. L. Flow-driven triboelectric generator for directly powering a wireless sensor node. Adv. Mater. 2015, 27, 240–248.Google Scholar
  93. [93]
    Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.Google Scholar
  94. [94]
    Yang, Y.; Zhou, Y. S.; Zhang, H. L.; Liu, Y.; Lee, S.; Wang, Z. L. A single-electrode based triboelectric nanogenerator as self-powered tracking system. Adv. Mater. 2013, 25, 6594–6601.Google Scholar
  95. [95]
    Zhu, G.; Yang, W. Q.; Zhang, T. J.; Jing, Q. S.; Chen, J.; Zhou, Y. S.; Bai, P.; Wang, Z. L. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 2014, 14, 3208–3213.Google Scholar
  96. [96]
    Liang, Q. J.; Zhanga, Z.; Yan, X. Q.; Gu, Y. S.; Zhao, Y. L.; Zhang, G. J.; Lu, S. N.; Liao, Q. L.; Zhang, Y. Functional triboelectric generator as self-powered vibration sensor with contact mode and non-contact mode. Nano Energy 2015, 14, 209–216.Google Scholar
  97. [97]
    Liang, Q. J.; Yan, X. Q.; Liao, X. Q.; Cao, S. Y.; Lu, S. N.; Zheng, X.; Zhang, Y. Integrated active sensor system for real time vibration monitoring. Sci. Rep. 2015, 5, 16063.Google Scholar
  98. [98]
    Yang, J.; Chen, J.; Liu, Y.; Yang, W. Q.; Su, Y. J.; Wang, Z. L. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 2014, 8, 2649–2657.Google Scholar
  99. [99]
    Fan, X.; Chen, J.; Yang, J.; Bai, P.; Li, Z. L.; Wang, Z. L. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 2015, 9, 4236–4243.Google Scholar
  100. [100]
    Su, Y. J.; Zhu, G.; Yang, W. Q.; Yang, J.; Chen, J.; Jing, Q. S.; Wu, Z. M.; Jiang, Y. D.; Wang, Z. L. Triboelectric sensor for self-powered tracking of object motion inside tubing. ACS Nano 2014, 8, 3843–3850.Google Scholar
  101. [101]
    Yi, F.; Lin, L.; Niu, S. M.; Yang, J.; Wu, W. Z.; Wang, S. H.; Liao, Q. L.; Zhang, Y.; Wang, Z. L. Self-powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor. Adv. Funct. Mater. 2014, 24, 7488–7494.Google Scholar
  102. [102]
    Han, C. B.; Zhang, C.; Li, X. H.; Zhang, L. M.; Zhou, T.; Hu, W. G.; Wang, Z. L. Self-powered velocity and trajectory tracking sensor array made of planar triboelectric nanogenerator pixels. Nano Energy 2014, 9, 325–333.Google Scholar
  103. [103]
    Lin, Z. H.; Zhu, G.; Zhou, Y. S.; Yang, Y.; Bai, P.; Chen, J.; Wang, Z. L. A self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem., Int. Ed. 2013, 52, 5065–5069.Google Scholar
  104. [104]
    Li, Z. L.; Chen, J.; Yang, J.; Su, Y. J.; Fan, X.; Wu, Y.; Yu, C. W.; Wang, Z. L. β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ. Sci. 2015, 8, 887–896.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mingyuan Ma
    • 1
  • Zhuo Kang
    • 1
  • Qingliang Liao
    • 1
  • Qian Zhang
    • 1
  • Fangfang Gao
    • 1
  • Xuan Zhao
    • 1
  • Zheng Zhang
    • 1
  • Yue Zhang
    • 1
    • 2
  1. 1.State Key Laboratory for Advanced Metals and Materials, School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Beijing Municipal Key Laboratory of Advanced Energy Materials and TechnologiesUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations