Nano Research

, Volume 11, Issue 6, pp 3453–3461 | Cite as

Enzymatic formation of curcumin in vitro and in vivo

  • Jiaqing Wang
  • Taotao Xiong
  • Jie Zhou
  • Hongjian He
  • Dongdong Wu
  • Xuewen Du
  • Xingyi LiEmail author
  • Bing XuEmail author
Research Article


The recent classification of curcumin (Cur) as a pan-assay interference compound (PAINS) and an invalid metabolic panaceas (IMPS) candidate demonstrated the controversial nature of Cur as a drug lead owing to its aggregation in aqueous phase and inherent instability in vivo. Here, we report a simple prodrug approach to generate nanoparticles of Curin situ that allow it to function reproducibly as an anticancer and an anti-inflammatory agent. Diphosphorylated curcumin (Cur-2p), a precursor of Cur and a substrate of alkaline phosphatase (ALP), exhibited drastically improved chemical stability and low aggregation in water. After conversion to curcumin around or inside cancer cells by ALP, Cur-2p selectively inhibited cancer cells that overexpressed ALP, but did not affect normal cells. Moreover, the intravitreal injection of Cur-2p resulted in excellent intraocular biocompatibility with no apparent damage to the morphology and visual function of retina, as shown by fundus imaging, optical coherence tomography (OCT), and histological observation. A rodent model of uveitis showed that Cur-2p significantly suppressed the inflammation response compared with Cur. As a rational approach to investigate and apply PAINS and IMPS candidates, this work presents a straightforward method to maximize the potential of drug leads and ultimately fulfil the promises and potential clinical benefits of PAINS and IMPS candidates.


enzymatic formation curcumin nanoparticles drug discovery anti-cancer anti-inflammatory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by National Institutes of Health (No. R01CA142746 and R21AI130560), National Science Foundation (No. MRSEC-1420382), Zhejiang Provincial Natural Science Foundation of China (No. LR18H300002), the National Natural Science Foundation of China (No. 31671022).

Supplementary material

12274_2018_1994_MOESM1_ESM.pdf (8.9 mb)
Enzymatic formation of curcumin in vitro and in vivo


  1. [1]
    Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674.CrossRefGoogle Scholar
  2. [2]
    Hopkins, A. L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690.CrossRefGoogle Scholar
  3. [3]
    Yang, Y.; Mu, J.; Xing, B. Photoactivated drug delivery and bioimaging. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2017, 9, doi: 10.1002/wnan.1408.Google Scholar
  4. [4]
    Sant, S.; Tao, S. L.; Fisher, O. Z.; Xu, Q. B.; Peppas, N. A.; Khademhosseini, A. Microfabrication technologies for oral drug delivery. Adv. Drug Deliver. Rev. 2012, 64, 496–507.CrossRefGoogle Scholar
  5. [5]
    Abe, Y.; Hashimoto, S.; Horie, T. Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol. Res. 1999, 39, 41–47.CrossRefGoogle Scholar
  6. [6]
    Aggarwal, B. B.; Harikumar, K. B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 2009, 41, 40–59.CrossRefGoogle Scholar
  7. [7]
    Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Curcumin as a wound healing agent. Life Sci. 2014, 116, 1–7.CrossRefGoogle Scholar
  8. [8]
    Bar-Sela, G.; Epelbaum, R.; Schaffer, M. Curcumin as an anti-cancer agent: Review of the gap between basic and clinical applications. Curr. Med. Chem. 2010, 17, 190–197.CrossRefGoogle Scholar
  9. [9]
    Wilken, R.; Veena, M. S.; Wang, M. B.; Srivatsan, E. S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 2011, 10, 12.CrossRefGoogle Scholar
  10. [10]
    Prasad, S.; Tyagi, A. K.; Aggarwal, B. B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice. Cancer Res. Treat. 2014, 46, 2–18.CrossRefGoogle Scholar
  11. [11]
    Ahmed, S.; Anuntiyo, J.; Malemud, C. J.; Haqqi, T. M. Biological basis for the use of botanicals in osteoarthritis and rheumatoid arthritis: A review. Evid.-Based Complement Alternat Med. 2005, 2, 301–308.CrossRefGoogle Scholar
  12. [12]
    Zhou, H. Y.; Beevers, C. S.; Huang, S. L. The targets of curcumin. Curr. Drug Targets 2011, 12, 332–347.CrossRefGoogle Scholar
  13. [13]
    Ahsan, H.; Parveen, N.; Khan, N. U.; Hadi, S. M. Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chem.-Biol. Interact. 1999, 121, 161–175.CrossRefGoogle Scholar
  14. [14]
    Lim, G. P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S. A.; Cole, G. M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 2001, 21, 8370–8377.CrossRefGoogle Scholar
  15. [15]
    Olivera, A.; Moore, T. W.; Hu, F.; Brown, A. P.; Sun, A. M.; Liotta, D. C.; Snyder, J. P.; Yoon, Y.; Shim, H.; Marcus, A. I. et al. Inhibition of the NF-kB signaling pathway by the curcumin analog, 3,5-bis(2-pyridinylmethylidene)-4-piperidone (EF31): Anti-inflammatory and anti-cancer properties. Int. Immunopharmacol. 2012, 12, 368–377.CrossRefGoogle Scholar
  16. [16]
    Rahman, I.; Adcock, I. M. Oxidative stress and redox regulation of lung inflammation in COPD. Eur. Respir. J. 2006, 28, 219–242.CrossRefGoogle Scholar
  17. [17]
    Xie, L.; Li, X. K.; Funeshima-Fuji, N.; Kimura, H.; Matsumoto, Y.; Isaka, Y.; Takahara, S. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int. Immunopharmacol. 2009, 9, 575–581.CrossRefGoogle Scholar
  18. [18]
    Zhuang, X. Y.; Xiang, X. Y.; Grizzle, W.; Sun, D. M.; Zhang, S. Q.; Axtell, R. C.; Ju, S. W.; Mu, J. Y.; Zhang, L. F.; Steinman, L. et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 2011, 19, 1769–1779.CrossRefGoogle Scholar
  19. [19]
    Wang, L.; Feng, J. F.; Chen, X. N.; Guo, W.; Du, Y. W.; Wang, Y. Y.; Zang, W. Q.; Zhang, S. J.; Zhao, G. Q. Myricetin enhance chemosensitivity of 5-fluorouracil on esophageal carcinoma in vitro and in vivo. Cancer Cell Int. 2014, 14, 71.CrossRefGoogle Scholar
  20. [20]
    Maher, P.; Akaishi, T.; Schubert, D.; Abe, K. A pyrazole derivative of curcumin enhances memory. Neurobiol. Aging 2010, 31, 706–709.CrossRefGoogle Scholar
  21. [21]
    Zhang, X. L.; Tian, Y. L.; Li, Z.; Tian, X. Y.; Sun, H. B.; Liu, H.; Moore, A.; Ran, C. Z. Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer’s disease. J. Am. Chem. Soc. 2013, 135, 16397–16409.CrossRefGoogle Scholar
  22. [22]
    Baell, J.; Walters, M. A. Chemistry: Chemical con artists foil drug discovery. Nature 2014, 513, 481–483.CrossRefGoogle Scholar
  23. [23]
    Bisson, J.; McAlpine, J. B.; Friesen, J. B.; Chen, S. N.; Graham, J.; Pauli, G. F. Can invalid bioactives undermine natural product-based drug discovery? J. Med. Chem. 2016, 59, 1671–1690.CrossRefGoogle Scholar
  24. [24]
    Nelson, K. M.; Dahlin, J. L.; Bisson, J.; Graham, J.; Pauli, G. F.; Walters, M. A. The essential medicinal chemistry of curcumin. J. Med. Chem. 2017, 60, 1620–1637.CrossRefGoogle Scholar
  25. [25]
    Heger, M. Drug screening: Don’t discount all curcumin trial data. Nature 2017, 543, 40.CrossRefGoogle Scholar
  26. [26]
    Zhou, J.; Du, X. W.; Berciu, C.; He, H. J.; Shi, J F..; Nicastro, D.; Xu, B. Enzyme-instructed self-assembly for spatiotemporal profiling of the activities of alkaline phosphatases on live cells. Chem 2016, 1, 246–263.CrossRefGoogle Scholar
  27. [27]
    Goldstein, D. J.; Rogers, C. E.; Harris, H. Expression of alkaline phosphatase loci in mammalian tissues. Proc. Natl. Acad. Sci. USA 1980, 77, 2857–2860.CrossRefGoogle Scholar
  28. [28]
    Bourne, G.; MacKinnon, M. The distribution of alkaline phosphatase in various tissues. Exp. Physiol. 1943, 32, 1–20.CrossRefGoogle Scholar
  29. [29]
    Coe, J. I. Postmortem chemistries on human vitreous humor. Am. J. Clin. Pathol. 1969, 51, 741–750.CrossRefGoogle Scholar
  30. [30]
    Wang, Y. J.; Pan, M. H.; Cheng, A. L.; Lin, L. I.; Ho, Y. S.; Hsieh, C. Y.; Lin, J. K. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharmaceut. Biomed. Anal. 1997, 15, 1867–1876.CrossRefGoogle Scholar
  31. [31]
    Griesser, M.; Pistis, V.; Suzuki, T.; Tejera, N.; Pratt, D. A.; Schneider, C. Autoxidative and cyclooxygenase-2 catalyzed transformation of the dietary chemopreventive agent curcumin. J. Biol. Chem. 2011, 286, 1114–1124.CrossRefGoogle Scholar
  32. [32]
    Halliwell, B.; Clement, M. V.; Long, L. H. Hydrogen peroxide in the human body. FEBS Lett. 2000, 486, 10–13.CrossRefGoogle Scholar
  33. [33]
    Fishman, W. H.; Inglis, N. R.; Green, S.; Anstiss, C. L.; Gosh, N. K.; Reif, A. E.; Rustigian, R.; Krant, M. J.; Stolbach, L. L. Immunology and biochemistry of Regan isoenzyme of alkaline phosphatase in human cancer. Nature 1968, 219, 697–699.CrossRefGoogle Scholar
  34. [34]
    Pires, R. A.; Abul-Haija, Y. M.; Costa, D. S.; Novoa-Carballal, R.; Reis, R. L.; Ulijn, R. V.; Pashkuleva, I. Controlling cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile. J. Am. Chem. Soc. 2015, 137, 576–579.CrossRefGoogle Scholar
  35. [35]
    Hoylaerts, M. F.; Manes, T.; Millán, J. L. Molecular mechanism of uncompetitive inhibition of human placental and germ-cell alkaline-phosphatase. Biochem. J. 1992, 286, 23–30.CrossRefGoogle Scholar
  36. [36]
    Dahl, R.; Sergienko, E. A.; Su, Y.; Mostofi, Y. S.; Yang, L.; Simao, A. M.; Narisawa, S.; Brown, B.; Mangravita-Novo, A.; Vicchiarelli, M. et al. Discovery and validation of a series of aryl sulfonamides as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). J. Med. Chem. 2009, 52, 6919–6925.CrossRefGoogle Scholar
  37. [37]
    Howard, A. D.; Berger, J.; Gerber, L.; Familletti, P.; Udenfriend, S. Characterization of the phosphatidylinositolglycan membrane anchor of human placental alkaline phosphatase. Proc. Natl. Acad. Sci. USA 1987, 84, 6055–6059.CrossRefGoogle Scholar
  38. [38]
    Julien, O.; Kampmann, M.; Bassik, M. C.; Zorn, J. A.; Venditto, V. J.; Shimbo, K.; Agard, N. J.; Shimada, K.; Rheingold, A. L.; Stockwell, B. R. et al. Unraveling the mechanism of cell death induced by chemical fibrils. Nat. Chem. Biol. 2014, 10, 969–976.CrossRefGoogle Scholar
  39. [39]
    Takahashi, N.; Duprez, L.; Grootjans, S.; Cauwels, A.; Nerinckx, W.; DuHadaway, J. B.; Goossens, V.; Roelandt, R.; Van Hauwermeiren, F.; Libert, C. et al. Necrostatin-1 analogues: Critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis. 2012, 3, e437.CrossRefGoogle Scholar
  40. [40]
    Jiang, Y. Y.; Cui, D.; Fang, Y.; Zhen, X.; Upputuri, P. K.; Pramanik, M.; Ding, D.; Pu, K. Y. Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. Biomaterials 2017, 145, 168–177.CrossRefGoogle Scholar
  41. [41]
    Zhang, J. J.; Zhen, X.; Upputuri, P. K.; Pramanik, M.; Chen, P.; Pu, K. Y. Activatable photoacoustic nanoprobes for in vivo ratiometric imaging of peroxynitrite. Adv. Mater. 2017, 29, 1604764.CrossRefGoogle Scholar
  42. [42]
    Zhen, X.; Zhang, C. W.; Xie, C.; Miao, Q. Q.; Lim, K. L.; Pu, K. Y. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. ACS Nano 2016, 10, 6400–6409.CrossRefGoogle Scholar
  43. [43]
    Luo, Z. C.; Wu, Q. J.; Yang, C. B.; Wang, H. M.; He, T.; Wang, Y. Z.; Wang, Z. Y.; Chen, H.; Li, X. Y.; Gong, C. Y. et al. A powerful CD8+ T-cell stimulating D-tetra-peptide hydrogel as a very promising vaccine adjuvant. Adv. Mater. 2017, 29, 1601776.CrossRefGoogle Scholar
  44. [44]
    Zhang, Y.; Guo, Y. M.; Xianyu, Y.; Chen, W. W.; Zhao, Y. Y.; Jiang, X. Y. Nanomaterials for ultrasensitive protein detection. Adv. Mater. 2013, 25, 3802–3819.CrossRefGoogle Scholar
  45. [45]
    Xie, C.; Zhen, X.; Lyu, Y.; Pu, K. Y. Nanoparticle regrowth enhances photoacoustic signals of semiconducting macromolecular probe for in vivo imaging. Adv. Mater. 2017, 29, 1703693.CrossRefGoogle Scholar
  46. [46]
    Zhu, C. L.; Huo, D.; Chen, Q. S.; Xue, J. J.; Shen, S.; Xia, Y. N. A eutectic mixture of natural fatty acids can serve as the gating material for near-infrared-triggered drug release. Adv. Mater. 2017, 29, 1703702.CrossRefGoogle Scholar
  47. [47]
    Capuzzi, S. J.; Muratov, E. N.; Tropsha, A. Phantom PAINS: Problems with the utility of alerts for pan-assay interference compounds. J. Chem. Inf. Model 2017, 57, 417–427.CrossRefGoogle Scholar
  48. [48]
    Wang, J. G.; Zhang, C.-J.; Chia, W. N.; Loh, C. C. Y.; Li, Z. J.; Lee, Y. M.; He, Y. K.; Yuan, L.-X.; Lim, T. K.; Liu, M. et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat. Commun. 2015, 6, 10111.CrossRefGoogle Scholar
  49. [49]
    Gupta, S. C.; Prasad, S.; Kim, J. H.; Patchva, S.; Webb, L. J.; Priyadarsini, I. K.; Aggarwal, B. B. Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep. 2011, 28, 1937–1955.CrossRefGoogle Scholar
  50. [50]
    Baker, M. Deceptive curcumin offers cautionary tale for chemists. Nature 2017, 541, 144–145.CrossRefGoogle Scholar
  51. [51]
    Singh, J.; Petter, R. C.; Baillie, T. A.; Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 2011, 10, 307–317.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryBrandeis UniversityWalthamUSA
  2. 2.Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouChina

Personalised recommendations