Nano Research

, Volume 11, Issue 8, pp 4090–4101 | Cite as

Triboelectric nanogenerator enhanced multilayered antibacterial nanofiber air filters for efficient removal of ultrafine particulate matter

  • Guang Qin Gu
  • Chang Bao Han
  • Jing Jing Tian
  • Tao Jiang
  • Chuan He
  • Cun Xin Lu
  • Yu Bai
  • Jin Hui Nie
  • Zhou Li
  • Zhong Lin Wang
Research Article


We developed a high-efficiency rotating triboelectric nanogenerator (R-TENG)-enhanced multilayered antibacterial polyimide (PI) nanofiber air filters for removing ultrafine particulate matter (PM) from ambient atmosphere. Compared to single-layered PI nanofiber filters, the multilayered nanofiber filter can completely remove all of the particles with diameters larger than 0.54 μm and shows enhanced removal efficiency for smaller PM particles. After connecting with aR-TENG, the removal efficiency of the filer for ultrafine particles is further enhanced. The highest removal efficiency for ultrafine particulate matter is 94.1% at the diameter of 53.3 nm and the average removal efficiency reached 89.9%. Despite an increase in the layer number, the thickness of each individual layer of the film decreased, and hence, the total pressure drop of the filter decreased instead of increasing. Moreover, the nanofiber film exhibited high antibacterial activity because of the addition of a small amount of silver nanoparticles. This technology with zero ozone release and low pressure drop is appropriate for cleaning air, haze treatment, and bacterial control.


triboelectric nanogenerator antibacterial property electrospinning Ag-polyimide nanofiber air filter ultrafine particle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Supports from the “thousands talents” program for the pioneer researcher and his innovation team, the National Key R & D Project from Ministry of Science and Technology (No. 2016YFA0202704), National Natural Science Foundation of China (Nos. 51432005, 51608039, 5151101243, 51561145021, 51702018, and 51505457), China Postdoctoral Science Foundation (No. 2015M581041), Natural Science Foundation of Beijing, China (No. 4154090), and Beijing Municipal Science & Technology Commission (No. Z171100000317001) are appreciated.

Supplementary material

12274_2018_1992_MOESM1_ESM.pdf (361 kb)
Triboelectric nanogenerator enhanced multilayered antibacterial nanofiber air filters for efficient removal of ultrafine particulate matter


  1. [1]
    World Health Organization. 7 million premature deaths annually linked to air pollution. (accessed on Mar 29, 2017).Google Scholar
  2. [2]
    Newby, D. E.; Mannucci, P. M.; Tell, G. S.; Baccarelli, A. A.; Brook, R. D.; Donaldson, K.; Forastiere, F.; Franchini, M.; Franco, O. H.; Graham, I. et al. Expert position paper on air pollution and cardiovascular disease. Eur. Heart J. 2015, 36, 83–93.CrossRefGoogle Scholar
  3. [3]
    Zhang, R.; Jing, J.; Tao, J.; Hsu, S. C.; Wang, G.; Cao, J.; Lee, C. S. L.; Zhu, L.; Chen, Z.; Zhao, Y. et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 2013, 13, 7053–7074.CrossRefGoogle Scholar
  4. [4]
    Nel, A. Air pollution-related illness: Effects of particles. Science 2005, 308, 804–806.CrossRefGoogle Scholar
  5. [5]
    Harrison, R. M.; Yin, J. X. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Sci. Total Environ. 2000, 249, 85–101.CrossRefGoogle Scholar
  6. [6]
    Brook, R. D.; Franklin, B.; Cascio, W.; Hong, Y. L.; Howard, G.; Lipsett, M.; Luepker, R.; Mittleman, M.; Samet, J.; Smith, S. C. et al. Air pollution and cardiovascular disease: A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation 2004, 109, 2655–2671.CrossRefGoogle Scholar
  7. [7]
    Brook, R. D.; Rajagopalan, S.; Pope, C. A.; Brook, J. R.; Bhatnagar, A.; Diez-Roux, A. V.; Holguin, F.; Hong, Y. L.; Luepker, R. V.; Mittleman, M. A. et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378.CrossRefGoogle Scholar
  8. [8]
    Pope, C. A.; Dockery, D. W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manage. Assoc. 2006, 56, 709–742.CrossRefGoogle Scholar
  9. [9]
    Dockery, D. W.; Pope, C. A.; Xu, X. P.; Spengler, J. D.; Ware, J. H.; Fay, M. E.; Ferris, B. G., Jr.; Speizer, F. E. An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 1993, 329, 1753–1759.CrossRefGoogle Scholar
  10. [10]
    Peters, A.; Wichmann, H. E.; Tuch, T.; Heinrich, J.; Heyder, J. Respiratory effects are associated with the number of ultrafine particles. Am. J. Respir. Crit. Care Med. 1997, 155, 1376–1383.CrossRefGoogle Scholar
  11. [11]
    Oberdorster, G.; Gelein, R. M.; Ferin, J.; Weiss, B. Association of particulate air-pollution and acute mortality: Involvement of ultrafine particles. Inhal. Toxicol. 1995, 7, 111–124.CrossRefGoogle Scholar
  12. [12]
    Brown, D. M.; Wilson, M. R.; MacNee, W.; Stone, V.; Donaldson, K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 2001, 175, 191–199.CrossRefGoogle Scholar
  13. [13]
    Li, N.; Sioutas, C.; Cho, A.; Schmitz, D.; Misra, C.; Sempf, J.; Wang, M. Y.; Oberley, T.; Froines, J.; Nel, A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 2003, 111, 455–460.CrossRefGoogle Scholar
  14. [14]
    Chalupa, D. C.; Morrow, P. E.; Oberdörster, G.; Utell, M. J.; Frampton, M. W. Ultrafine particle deposition in subjects with asthma. Environ. Health Perspect. 2004, 112, 879–882.CrossRefGoogle Scholar
  15. [15]
    Daigle, C. C.; Chalupa, D. C.; Gibb, F. R.; Morrow, P. E.; Oberdörster, G.; Utell, M. J.; Frampton, M. W. Ultrafine particle deposition in humans during rest and exercise. Inhal. Toxicol. 2003, 15, 539–552.CrossRefGoogle Scholar
  16. [16]
    Stearns, R. C.; Murthy, G. G. K.; Skornik, W.; Hatch, V.; Katler, M.; Godleski, J. J. Detection of ultrafine copper oxide particles in the lungs of hamsters by electron spectroscopic imaging. In: Proceedings of ICEM 13-PARIS. Paris, France, 1994, 763–764.Google Scholar
  17. [17]
    Terzano, C.; Di Stefano, F.; Conti, V.; Graziani, E.; Petroianni, A. Air pollution ultrafine particles: Toxicity beyond the lung. Eur. Rev. Med. Pharmacol. Sci. 2010, 14, 809–821.Google Scholar
  18. [18]
    Maynard, R. L.; Howard, V. Particulate Matter: Properties and Effects upon Health; BIOS Scientific Publishers Ltd.: Oxford, 1999; pp 63–84.Google Scholar
  19. [19]
    Carero, A. D. P.; Hoet, P. H. M.; Verschaeve, L.; Schoeters, G.; Nemery, B. Genotoxic effects of carbon black particles, diesel exhaust particles, and urban air particulates and their extracts on a human alveolar epithelial cell line (A549) and a human monocytic cell line (THP-1). Environ. Mol. Mutagen. 2001, 37, 155–163.CrossRefGoogle Scholar
  20. [20]
    QUARG. Airborne Particulate Matter in the United Kingdom. Third Report of the Quality of Urban Air Review Group, Department of the Environment. 1996.Google Scholar
  21. [21]
    Cao, C.; Jiang, W. J.; Wang, B. Y.; Fang, J. H.; Lang, J. D.; Tian, G.; Jiang, J. K.; Zhu, T. F. Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event. Environ. Sci. Technol. 2014, 48, 1499–1507.CrossRefGoogle Scholar
  22. [22]
    Poppendieck, D. G.; Rim, D.; Persily, A. K. Ultrafine particle removal and ozone generation by in-duct electrostatic precipitators. Environ. Sci. Technol. 2014, 48, 2067–2074.CrossRefGoogle Scholar
  23. [23]
    Bo, Z.; Yu, K. H.; Lu, G. H.; Mao, S.; Chen, J. H.; Fan, F. G. Nanoscale discharge electrode for minimizing ozone emission from indoor corona devices. Environ. Sci. Technol. 2010, 44, 6337–6342.CrossRefGoogle Scholar
  24. [24]
    Chen, J. H.; Davidson, J. H. Ozone production in the negative DC corona: The dependence of discharge polarity. Plasma Chem. Plasma Process. 2003, 23, 501–518.CrossRefGoogle Scholar
  25. [25]
    Hosseini, S. A.; Tafreshi, H. V. 3-D simulation of particle filtration in electrospun nanofibrous filters. Powder Technol. 2010, 201, 153–160.CrossRefGoogle Scholar
  26. [26]
    Thomas, D.; Penicot, P.; Contal, P.; Leclerc, D.; Vendel, J. Clogging of fibrous filters by solid aerosol particles: Experimental and modelling study. Chem. Eng. Sci. 2001, 56, 3549–3561.CrossRefGoogle Scholar
  27. [27]
    Dagdeviren, C.; Joe, P.; Tuzman, O. L.; Park, K.-I.; Lee, K. J.; Shi, Y.; Huang, Y. G.; Rogers, J. A. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extreme Mech. Lett. 2016, 9, 269–281.CrossRefGoogle Scholar
  28. [28]
    Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.CrossRefGoogle Scholar
  29. [29]
    Zhang, Y.; Yang, Y.; Gu, Y. S.; Yan, X. Q.; Liao, Q. L.; Li, P. F.; Zhang, Z.; Wang, Z. Z. Performance and service behavior in 1-D nanostructured energy conversion devices. Nano Energy 2015, 14, 30–48.CrossRefGoogle Scholar
  30. [30]
    Liang, Q. J.; Zhang, Q.; Yan, X. Q.; Liao, X. Q.; Han, L. H.; Yi, F.; Ma, M. Y.; Zhang, Y. Recyclable and green triboelectric nanogenerator. Adv. Mater. 2017, 29, 1604961.CrossRefGoogle Scholar
  31. [31]
    Ma, M. Y.; Zhang, Z.; Liao, Q. L.; Zhang, G. J.; Gao, F. F.; Zhao, X.; Zhang, Q.; Xun, X. C.; Zhang, Z. M.; Zhang, Y. Integrated hybrid nanogenerator for gas energy recycle and purification. Nano Energy 2017, 39, 524–531.CrossRefGoogle Scholar
  32. [32]
    Wang, H. S.; Jeong, C. K.; Seo, M. H.; Joe, D. J.; Han, J. H.; Yoon, J. B.; Lee, K. J. Performance-enhanced triboelectric nanogenerator enabled by wafer-scale nanogrates of multistep pattern downscaling. Nano Energy 2017, 35, 415–423.CrossRefGoogle Scholar
  33. [33]
    Yi, F.; Wang, X. F.; Niu, S. M.; Li, S. M.; Yin, Y. J.; Dai, K. R.; Zhang, G. J.; Lin, L.; Wen, Z.; Guo, H. Y. et al. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci. Adv. 2016, 2, e1501624.CrossRefGoogle Scholar
  34. [34]
    Zhang, Q.; Liang, Q. J.; Liao, Q. L.; Yi, F.; Zheng, X.; Ma, M. Y.; Gao, F. F.; Zhang, Y. Service behavior of multifunctional triboelectric nanogenerators. Adv. Mater. 2017, 29, 1606703.CrossRefGoogle Scholar
  35. [35]
    Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.CrossRefGoogle Scholar
  36. [36]
    Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334.CrossRefGoogle Scholar
  37. [37]
    Gu, G. Q.; Han, C. B.; Tian, J. J.; Lu, C. X.; He, C.; Jiang, T.; Li, Z.; Wang, Z. L. Antibacterial composite film-based triboelectric nanogenerator for harvesting walking energy. ACS Appl. Mater. Interfaces 2017, 9, 11882–11888.CrossRefGoogle Scholar
  38. [38]
    Zhu, G.; Bai, P.; Chen, J.; Wang, Z. L. Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2013, 2, 688–692.CrossRefGoogle Scholar
  39. [39]
    Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z. H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119–7125.CrossRefGoogle Scholar
  40. [40]
    Zhu, G.; Su, Y. J.; Bai, P.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Wang, Z. L. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 2014, 8, 6031–6037.CrossRefGoogle Scholar
  41. [41]
    Han, C. B.; Du, W. M.; Zhang, C.; Tang, W.; Zhang, L. M.; Wang, Z. L. Harvesting energy from automobile brake in contact and non-contact mode by conjunction of triboelectrication and electrostatic-induction processes. Nano Energy 2014, 6, 59–65.CrossRefGoogle Scholar
  42. [42]
    Yang, W. Q.; Chen, J.; Jing, Q. S.; Yang, J.; Wen, X. N.; Su, Y. J.; Zhu, G.; Bai, P.; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090–4096.CrossRefGoogle Scholar
  43. [43]
    Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580–3591.CrossRefGoogle Scholar
  44. [44]
    Han, C. B.; Jiang, T.; Zhang, C.; Li, X. H.; Zhang, C. Y.; Cao, X.; Wang, Z. L. Removal of particulate matter emissions from a vehicle using a self-powered triboelectric filter. ACS Nano 2015, 9, 12552–12561.CrossRefGoogle Scholar
  45. [45]
    Gu, G. Q.; Han, C. B.; Lu, C. X.; He, C.; Jiang, T.; Gao, Z. L.; Li, C. J.; Wang, Z. L. Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal. ACS Nano 2017, 11, 6211–6217.CrossRefGoogle Scholar
  46. [46]
    Pastoriza-Santos, I.; Liz-Marzán, L. M. Reduction of silver nanoparticles in DMF. Formation of monolayers and stable colloids. Pure Appl. Chem. 2000, 72, 83–90.CrossRefGoogle Scholar
  47. [47]
    Pastoriza-Santos, I.; Liz-Marzán, L. M. Formation of PVP-protected metal nanoparticles in DMF. Langmuir 2002, 18, 2888–2894.CrossRefGoogle Scholar
  48. [48]
    Zhao, X. L.; Wang, S.; Yin, X.; Yu, J. Y.; Ding, B. Slip-effect functional air filter for efficient purification of PM2.5. Sci. Rep. 2016, 6, 35472.CrossRefGoogle Scholar
  49. [49]
    Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial- arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.CrossRefGoogle Scholar
  50. [50]
    Han, C. B.; Zhang, C.; Tang, W.; Li, X. H.; Wang, Z. L. High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Res. 2015, 8, 722–730.CrossRefGoogle Scholar
  51. [51]
    Kocik, M.; Dekowski, J.; Mizeraczyk, J. Particle precipitation efficiency in an electrostatic precipitator. J. Electrost. 2005, 63, 761–766.CrossRefGoogle Scholar
  52. [52]
    Xiao, G.; Wang, X. H.; Zhang, J. P.; Ni, M. J.; Gao, X.; Luo, Z. Y.; Cen, K. F. Granular bed filter: A promising technology for hot gas clean-up. Powder Technol. 2013, 244, 93–99.CrossRefGoogle Scholar
  53. [53]
    Liu, K. Y.; Rau, J. Y.; Wey, M. Y. Collection of SiO2, Al2O3 and Fe2O3 particles using a gas-solid fluidized bed filter. J. Hazard. Mater. 2009, 171, 102–110.CrossRefGoogle Scholar
  54. [54]
    Chen, T. M.; Tsai, C. J.; Yan, S. Y.; Li, S. N. An efficient wet electrostatic precipitator for removing nanoparticles, submicron and micron-sized particles. Sep. Purif. Technol. 2014, 136, 27–35.CrossRefGoogle Scholar
  55. [55]
    Liu, C.; Hsu, P. C.; Lee, H. W.; Ye, M.; Zheng, G. Y.; Liu, N. A.; Li, W. Y.; Cui, Y. Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 2015, 6, 6205.CrossRefGoogle Scholar
  56. [56]
    Pline, W. A.; Lacy, G. H.; Stromberg, V.; Hatzios, K. K. Antibacterial activity of the herbicide glufosinate on Pseudomonas syringae pathovar glycinea. Pestic. Biochem. Physiol. 2001, 71, 48–55.CrossRefGoogle Scholar
  57. [57]
    de Oliva Neto, P.; Ferreira, M. A.; Yokoya, F. Screening for yeast with antibacterial properties from an ethanol distillery. Bioresour. Technol. 2004, 92, 1–6.CrossRefGoogle Scholar
  58. [58]
    Moritz, M.; Geszke-Moritz, M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem. Eng. J. 2013, 228, 596–613.CrossRefGoogle Scholar
  59. [59]
    Barani, H.; Montazer, M.; Samadi, N.; Toliyat, T. In situ synthesis of nano silver/lecithin on wool: Enhancing nanoparticles diffusion. Colloids Surf. B 2012, 92, 9–15.CrossRefGoogle Scholar
  60. [60]
    Agnihotri, S.; Mukherji, S.; Mukherji, S. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: Elucidation of the mechanism of bactericidal action of silver. Nanoscale 2013, 5, 7328–7340.CrossRefGoogle Scholar
  61. [61]
    Tian, J. J.; Feng, H. Q.; Yan, L.; Yu, M.; Ouyang, H.; Li, H.; Jiang, W.; Jin, Y. M.; Zhu, G.; Li, Z. et al. A self-powered sterilization system with both instant and sustainable anti-bacterial ability. Nano Energy 2017, 36, 241–249.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guang Qin Gu
    • 1
    • 2
  • Chang Bao Han
    • 1
    • 2
  • Jing Jing Tian
    • 1
    • 2
  • Tao Jiang
    • 1
    • 2
  • Chuan He
    • 1
    • 2
  • Cun Xin Lu
    • 1
    • 2
  • Yu Bai
    • 1
    • 2
  • Jin Hui Nie
    • 1
    • 2
  • Zhou Li
    • 1
    • 2
  • Zhong Lin Wang
    • 1
    • 2
    • 3
  1. 1.Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
  2. 2.School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations