Advertisement

Nano Research

, Volume 11, Issue 6, pp 2992–3008 | Cite as

Aqueous electrocatalytic N2 reduction under ambient conditions

  • Na Cao
  • Gengfeng Zheng
Review Article

Abstract

Recently, the electrochemical N2 reduction reaction (NRR) in aqueous electrolytes at ambient temperature and pressure has demonstrated its unique advantages and potentials. The reactants are directly derived from gaseous N2 and water, which are naturally abundant, and NH3 production is important for fertilizers and other industrial applications. To improve the conversion yield and selectivity (mainly competing with water reduction), electrocatalysts must be rationally designed to optimize the mass transport, chemisorption, and transduction pathways of protons and electrons. In this review, we summarize recent progress in the electrochemical NRR. Studies of electrocatalyst designs are summarized for different categories, including metal-based catalysts, metal oxide-derived catalysts, and hybrid catalysts. Strategies for enhancing the NRR performance based on the facet orientation, metal oxide interface, crystallinity, and nitrogen vacancies are presented. Additional system designs, such as lithium-nitrogen batteries, and the solvent effect are introduced. Finally, existing challenges and prospects are discussed.

Keywords

N2 reduction electrocatalyst aqueous electrolyte faradaic efficiency 

Notes

Acknowledgements

We thank the following funding agencies for supporting this work: the National Key Research and Development Program of China (Nos. 2017YFA0206901 and 2017YFA0206900), the National Natural Science Foundation of China (Nos. 21473038 and 21773036), the Science and Technology Commission of Shanghai Municipality (No. 17JC1402000), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChem).

References

  1. [1]
    Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. F.; Chorkendorff, I.; Nørskov, J. K. Electrochemical ammonia synthesis-The selectivity challenge. ACS Catal. 2017, 7, 706–709.CrossRefGoogle Scholar
  2. [2]
    Cui, B. C.; Zhang, J. H.; Liu, S. Z.; Liu, X. J.; Xiang, W.; Liu, L. F.; Xin, H. Y.; Lefler, M. J.; Licht, S. Electrochemical synthesis of ammonia directly from N2 and water over iron-based catalysts supported on activated carbon. Green Chem. 2017, 19, 298–304.CrossRefGoogle Scholar
  3. [3]
    Schlögl, R. Catalytic synthesis of ammonia-A “never-ending story”? Angew. Chem., Int. Ed. 2003, 42, 2004–2008.CrossRefGoogle Scholar
  4. [4]
    Klerke, A.; Christensen, C. H.; Nørskov, J. K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304–2310.CrossRefGoogle Scholar
  5. [5]
    Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C. et al. Light-driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–449.CrossRefGoogle Scholar
  6. [6]
    Service, R. F. New recipe produces ammonia from air, water, and sunlight. Science 2014, 345, 610.CrossRefGoogle Scholar
  7. [7]
    Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.CrossRefGoogle Scholar
  8. [8]
    Licht, S.; Cui, B. C.; Wang, B. H.; Li, F. F.; Lau, J.; Liu, S. Z. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 2014, 345, 637–640.CrossRefGoogle Scholar
  9. [9]
    van Kessel, M. A. H. J.; Speth, D. R.; Albertsen, M.; Nielsen, P. H.; Op den Camp, H. J. M.; Kartal, B.; Jetten, M. S. M.; Lücker, S. Complete nitrification by a single microorganism. Nature 2015, 528, 555–559.CrossRefGoogle Scholar
  10. [10]
    Shipman, M. A.; Symes, M. D. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 2017, 286, 57–68.CrossRefGoogle Scholar
  11. [11]
    Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 2010, 3, 43–81.Google Scholar
  12. [12]
    Galloway, J. N.; Cowling, E. B. Reactive nitrogen and the world: 200 years of change. Ambio 2002, 31, 64–71.CrossRefGoogle Scholar
  13. [13]
    Hao, Y. C.; Dong, X. L.; Zhai, S. R.; Ma, H. C.; Wang, X. Y.; Zhang, X. F. Hydrogenated bismuth molybdate nanoframe for efficient sunlight-driven nitrogen fixation from air. Chem. Eur. J. 2016, 22, 18722–18728.CrossRefGoogle Scholar
  14. [14]
    Burgess, B.; Wherland, S.; Newton, W.; Stiefel, E. I. Nitrogenase reactivity: Insight into the nitrogen-fixing process through hydrogen-inhibition and HD-forming reactions. Biochemistry 1981, 20, 5140–5146.CrossRefGoogle Scholar
  15. [15]
    Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.CrossRefGoogle Scholar
  16. [16]
    Sun, S. M.; Li, X. M.; Wang, W. Z.; Zhang, L.; Sun, X. Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS2. Appl. Catal. B: Environ. 2017, 200, 323–329.CrossRefGoogle Scholar
  17. [17]
    Li, X. M.; Wang, W. Z.; Jiang, D.; Sun, S. M.; Zhang, L.; Sun, X. Efficient solar-driven nitrogen fixation over carbon-tungstic- acid hybrids. Chemistry 2016, 22, 13819–13822.CrossRefGoogle Scholar
  18. [18]
    Sun, S. M.; An, Q.; Wang, W. Z.; Zhang, L.; Liu, J. J.; Goddard III, W. A. Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots. J. Mater. Chem. A 2017, 5, 201–209.CrossRefGoogle Scholar
  19. [19]
    Li, H.; Shang, J.; Ai, Z. H.; Zhang, L. Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {111} facets. J. Am. Chem. Soc. 2015, 137, 6393–6399.CrossRefGoogle Scholar
  20. [20]
    Yandulov, D. V.; Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 2003, 301, 76–78.CrossRefGoogle Scholar
  21. [21]
    Kordali, V.; Kyriacou, G.; Lambrou, C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun. 2000, 1673–1674.Google Scholar
  22. [22]
    Pappenfus, T. M.; Lee, K.; Thoma, L. M.; Dukart, C. R. Wind to ammonia: Electrochemical processes in room temperature Ionic liquids. ECS Trans. 2009, 16, 89–93.CrossRefGoogle Scholar
  23. [23]
    Lu, Y. F.; Li, J.; Tada, T.; Toda, Y.; Ueda, S.; Yokoyama, T.; Kitano, M.; Hosono, H. Water durable electride Y5Si3: Electronic structure and catalytic activity for ammonia synthesis. J. Am. Chem. Soc. 2016, 138, 3970–3973.CrossRefGoogle Scholar
  24. [24]
    Kugler, K.; Ohs, B.; Scholz, M.; Wessling, M. Towards a carbon independent and CO2-free electrochemical membrane process for NH3 synthesis. Phys. Chem. Chem. Phys. 2014, 16, 6129–6138.CrossRefGoogle Scholar
  25. [25]
    Guo, X. H.; Zhu, Y. P.; Ma, T. Y. Lowering reaction temperature: Electrochemical ammonia synthesis by coupling various electrolytes and catalysts. J. Energy Chem. 2017, 26, 1107–1116.CrossRefGoogle Scholar
  26. [26]
    Chen, G. F.; Cao, X. R.; Wu, S. Q.; Zeng, X. Y.; Ding, L. X.; Zhu, M.; Wang, H. H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 2017, 139, 9771–9774.CrossRefGoogle Scholar
  27. [27]
    Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.CrossRefGoogle Scholar
  28. [28]
    Kyriakou, V.; Garagounis, I.; Vasileiou, E.; Vourros, A.; Stoukides, M. Progress in the electrochemical synthesis of ammonia. Catal. Today 2017, 286, 2–13.CrossRefGoogle Scholar
  29. [29]
    Kuang, M.; Zheng, G. F. Nanostructured bifunctional redox electrocatalysts. Small 2016, 12, 5656–5675.CrossRefGoogle Scholar
  30. [30]
    Li, J.; Zheng, G. F. One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv. Sci. 2017, 4, 1600380.CrossRefGoogle Scholar
  31. [31]
    Abghoui, Y.; Skúlason, E. Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group III–VII transition metal mononitrides. Catal. Today 2017, 286, 78–84.CrossRefGoogle Scholar
  32. [32]
    Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.CrossRefGoogle Scholar
  33. [33]
    Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Room-temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas–liquid–solid three-phase reactor. ACS Sustain. Chem. Eng. 2017, 5, 7393–7400.CrossRefGoogle Scholar
  34. [34]
    Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 2699–2703.CrossRefGoogle Scholar
  35. [35]
    Skulason, E.; Bligaard, T.; Gudmundsdottir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.CrossRefGoogle Scholar
  36. [36]
    Nguyen, M. T.; Seriani, N.; Gebauer, R. Nitrogen electrochemically reduced to ammonia with hematite: Density-functional insights. Phys. Chem. Chem. Phys. 2015, 17, 14317–14322.CrossRefGoogle Scholar
  37. [37]
    Kumar, C. V. S.; Subramanian, V. Can boron antisites of BNNTs be an efficient metal-free catalyst for nitrogen fixation? -A DFT investigation. Phys. Chem. Chem. Phys. 2017, 19, 15377–15387.CrossRefGoogle Scholar
  38. [38]
    Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.CrossRefGoogle Scholar
  39. [39]
    Howalt, J. G.; Vegge, T. Electrochemical ammonia production on molybdenum nitride nanoclusters. Phys. Chem. Chem. Phys. 2013, 15, 20957–20965.CrossRefGoogle Scholar
  40. [40]
    Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.CrossRefGoogle Scholar
  41. [41]
    Dou, S.; Tao, L.; Huo, J.; Wang, S. Y.; Dai, L. M. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 1320–1326.CrossRefGoogle Scholar
  42. [42]
    Tian, G. L.; Zhang, Q.; Zhang, B. S.; Jin, Y. G.; Huang, J. Q.; Su, D. S.; Wei, F. Toward full exposure of “active sites”: Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity. Adv. Funct. Mater. 2014, 24, 5956–5961.CrossRefGoogle Scholar
  43. [43]
    Sun, X. H.; Jiang, K. Z.; Zhang, N.; Guo, S. J.; Huang, X. Q. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 2015, 9, 7634–7640.CrossRefGoogle Scholar
  44. [44]
    Tang, C.; Wang, H. F.; Chen, X.; Li, B. Q.; Hou, T. Z.; Zhang, B. S.; Zhang, Q.; Titirici, M. M.; Wei, F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 2016, 28, 6845–6851.CrossRefGoogle Scholar
  45. [45]
    Xiao, Z. H.; Wang, Y.; Huang, Y. C.; Wei, Z. X.; Dong, C. L.; Ma, J. M.; Shen, S. H.; Li, Y. F.; Wang, S. Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569.CrossRefGoogle Scholar
  46. [46]
    Kugler, K.; Luhn, M.; Schramm, J. A.; Rahimi, K.; Wessling, M. Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis. Phys. Chem. Chem. Phys. 2015, 17, 3768–3782.CrossRefGoogle Scholar
  47. [47]
    Logadottir, A.; Rod, T. H.; Nørskov, J. K.; Hammer, B.; Dahl, S.; Jacobsen, C. J. H. The Brønsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 2001, 197, 229–231.CrossRefGoogle Scholar
  48. [48]
    Ishikawa, A.; Doi, T.; Nakai, H. Catalytic performance of Ru, Os, and Rh nanoparticles for ammonia synthesis: A density functional theory analysis. J. Catal. 2018, 357, 213–222.CrossRefGoogle Scholar
  49. [49]
    Pickett, C.; Talarmin, J. Electrosynthesis of ammonia. Nature 1985, 317, 652–653.CrossRefGoogle Scholar
  50. [50]
    Furuya, N.; Yoshiba, H. Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by Fe-phthalocyanine. J. Electroanal. Chem. Interf. Electrochem. 1989, 263, 171–174.CrossRefGoogle Scholar
  51. [51]
    Furuya, N.; Yoshiba, H. Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by metal phthalocyanines. J. Electroanal. Chem. Interf. Electrochem. 1989, 272, 263–266.CrossRefGoogle Scholar
  52. [52]
    Shipman, M. A.; Symes, M. D. A re-evaluation of Sn(II) phthalocyanine as a catalyst for the electrosynthesis of ammonia. Electrochim. Acta 2017, 258, 618–622.CrossRefGoogle Scholar
  53. [53]
    Jeong, E. Y.; Yoo, C. Y.; Jung, C. H.; Park, J. H.; Park, Y. C.; Kim, J. N.; Oh, S. G.; Woo, Y.; Yoon, H. C. Electrochemical ammonia synthesis mediated by titanocene dichloride in aqueous electrolytes under ambient conditions. ACS Sustainable Chem. Eng. 2017, 5, 9662–9666.CrossRefGoogle Scholar
  54. [54]
    Hellman, A.; Baerends, E. J.; Biczysko, M.; Bligaard, T.; Christensen, C. H.; Clary, D. C.; Dahl, S.; van Harrevelt, R.; Honkala, K.; Jonsson, H. et al. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. J. Phys. Chem. B 2006, 110, 17719–17735.CrossRefGoogle Scholar
  55. [55]
    Dahl, S.; Logadottir, A.; Egeberg, R. C.; Larsen, J. H.; Chorkendorff, I.; Törnqvist, E.; Nørskov, J. K. Role of steps in N2 activation on Ru (0001). Phys. Rev. Lett. 1999, 83, 1814–1817.CrossRefGoogle Scholar
  56. [56]
    Dahl, S.; Törnqvist, E.; Chorkendorff, I. Dissociative adsorption of N2 on Ru (0001): A surface reaction totally dominated by steps. J. Catal. 2000, 192, 381–390.CrossRefGoogle Scholar
  57. [57]
    Strongin, D. R.; Carrazza, J.; Bare, S. R.; Somoriai, G. A. The importance of C7 sites and surface roughness in the ammonia synthesis reaction over iron. J. Catal. 1987, 103, 213–215.CrossRefGoogle Scholar
  58. [58]
    Yang, D. S.; Chen, T.; Wang, Z. J. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. J. Mater. Chem. A 2017, 5, 18967–18971.CrossRefGoogle Scholar
  59. [59]
    Renner, J. N.; Greenlee, L. F.; Ayres, K. E.; Herring, A. M. Electrochemical synthesis of ammonia: A low pressure, low temperature approach. Electrochem. Soc. Interface 2015, 24, 51–57.CrossRefGoogle Scholar
  60. [60]
    Kong, J.; Lim, A.; Yoon, C.; Jang, J. H.; Ham, H. C.; Han, J.; Nam, S.; Kim, D.; Sung, Y. E.; Choi, J. et al. Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst. ACS Sustain. Chem. Eng. 2017, 5, 10986–10995.CrossRefGoogle Scholar
  61. [61]
    Höskuldsson, Á. B.; Abghoui, Y.; Gunnarsdóttir, A. B.; Skúlason, E. Computational screening of rutile oxides for electrochemical ammonia formation. ACS Sustainable Chem. Eng. 2017, 5, 10327–10333.CrossRefGoogle Scholar
  62. [62]
    Furuya, N.; Yoshiba, H. Electroreduction of nitrogen to ammonia on gas-diffusion electrodes loaded with inorganic catalyst. J. Electroanal. Chem. Interfac. Electrochem. 1990, 291, 269–272.CrossRefGoogle Scholar
  63. [63]
    Lan, R.; Alkhazmi, K. A.; Amar, I. A.; Tao, S. W. Synthesis of ammonia directly from wet air using new perovskite oxide La0.8Cs0.2Fe0.8Ni0.2O3-δ as catalyst. Electrochim. Acta 2014, 123, 582–587.CrossRefGoogle Scholar
  64. [64]
    Bruix, A.; Rodriguez, J. A.; Ramirez, P. J.; Senanayake, S. D.; Evans, J.; Park, J. B.; Stacchiola, D.; Liu, P.; Hrbek, J.; Illas, F. A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J. Am. Chem. Soc. 2012, 134, 8968–8974.CrossRefGoogle Scholar
  65. [65]
    Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.CrossRefGoogle Scholar
  66. [66]
    Wang, R.; Xue, X. Y.; Lu, W. C.; Liu, H. W.; Lai, C.; Xi, K.; Che, Y. K.; Liu, J. Q.; Guo, S. J.; Yang, D. J. Tuning and understanding the phase interface of TiO2 nanoparticles for more efficient lithium ion storage. Nanoscale 2015, 7, 12833–12838.CrossRefGoogle Scholar
  67. [67]
    Guo, S. J.; Zhang, X.; Zhu, W. L.; He, K.; Su, D.; Mendoza-Garcia, A.; Ho, S. F.; Lu, G.; Sun, S. H. Nanocatalyst superior to Pt for oxygen reduction reactions: The case of core/shell Ag(Au)/CuPd nanoparticles. J. Am. Chem. Soc. 2014, 136, 15026–15033.CrossRefGoogle Scholar
  68. [68]
    Farmer, J. A.; Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 2010, 329, 933–936.CrossRefGoogle Scholar
  69. [69]
    Wang, Y. H.; Cui, X. Q.; Zhang, Y. Y.; Zhang, L. J.; Gong, X. G.; Zheng, G. F. Achieving high aqueous energy storage via hydrogen-generation passivation. Adv. Mater. 2016, 28, 7626–7632.CrossRefGoogle Scholar
  70. [70]
    Abghoui, Y.; Garden, A. L.; Hlynsson, V. F.; Björgvinsdóttir, S.; Ólafsdóttir, H.; Skúlason, E. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys. Chem. Chem. Phys. 2015, 17, 4909–4918.CrossRefGoogle Scholar
  71. [71]
    Azofra, L. M.; Li, N.; MacFarlane, D. R.; Sun, C. H. Promising prospects for 2D d2–d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy Environ. Sci. 2016, 9, 2545–2549.CrossRefGoogle Scholar
  72. [72]
    Zhao, X. R.; Yin, F. X.; Liu, N.; Li, G. R.; Fan, T. X.; Chen, B. H. Highly efficient metal–organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure. J. Mater. Sci. 2017, 52, 10175–10185.CrossRefGoogle Scholar
  73. [73]
    Abghoui, Y.; Garden, A. L.; Howat, J. G.; Vegge, T.; Skúlason, E. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: A DFT guide for experiments. ACS Catal. 2016, 6, 635–646.CrossRefGoogle Scholar
  74. [74]
    Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.CrossRefGoogle Scholar
  75. [75]
    Köleli, F.; Kayan, D. B. Low overpotential reduction of dinitrogen to ammonia in aqueous media. J. Electroanal. Chem. 2010, 638, 119–122.CrossRefGoogle Scholar
  76. [76]
    Kim, K.; Lee, N.; Yoo, C. Y.; Kim, J. N.; Yoon, H. C.; Han, J. I. Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure. J. Electrochem. Soc. 2016, 163, F610–F612.CrossRefGoogle Scholar
  77. [77]
    Kim, K.; Yoo, C. Y.; Kim, J. N.; Yoon, H. C.; Han, J. I. Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure. J. Electrochem. Soc. 2016, 163, F1523–F1526.CrossRefGoogle Scholar
  78. [78]
    Ma, J. L.; Bao, D.; Shi, M. M.; Yan, J. M.; Zhang, X. B. Reversible nitrogen fixation based on a rechargeable lithium- nitrogen battery for energy storage. Chem 2017, 2, 525–532.CrossRefGoogle Scholar
  79. [79]
    Lan, R.; Irvine, J. T. S.; Tao, S. W. Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci. Rep. 2013, 3, 1145.CrossRefGoogle Scholar
  80. [80]
    Köleli, F.; Röpke, T. Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode. Appl. Catal. B 2006, 62, 306–310.CrossRefGoogle Scholar
  81. [81]
    Lan, R.; Tao, S. W. Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4 + mixed conducting electrolyte. RSC Adv. 2013, 3, 18016–18021.CrossRefGoogle Scholar
  82. [82]
    Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Acc. Chem. Res. 2005, 38, 955–962.CrossRefGoogle Scholar
  83. [83]
    Anderson, J. S.; Rittle, J.; Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 2013, 501, 84–87.CrossRefGoogle Scholar
  84. [84]
    Arashiba, K.; Miyake, Y.; Nishibayashi, Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat. Chem. 2010, 3, 120–125.CrossRefGoogle Scholar
  85. [85]
    Jackson, M. N.; Surendranath, Y. Donor-dependent kinetics of interfacial proton-coupled electron transfer. J. Am. Chem. Soc. 2016, 138, 3228–3234.CrossRefGoogle Scholar
  86. [86]
    Christensen, C. H.; Johannessen, T.; Sørensen, R. Z.; Nørskov, J. K. Towards an ammonia-mediated hydrogen economy? Catal. Today 2006, 111, 140–144.CrossRefGoogle Scholar
  87. [87]
    Lan, R.; Tao, S. W. Ammonia as a suitable fuel for fuel cells. Front. Energy Res. 2014, 2, 35.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy MaterialsFudan UniversityShanghaiChina

Personalised recommendations