Nano Research

, Volume 11, Issue 6, pp 3145–3153 | Cite as

Ultra-small Pd clusters supported by chitin nanowires as highly efficient catalysts

  • Xianglin Pei
  • Yi Deng
  • Bo Duan
  • Ting-Shan Chan
  • Jyh-Fu Lee
  • Aiwen Lei
  • Lina Zhang
Research Article


For the first time, chitin microspheres woven from nanowires with multi-scale porous structures were used as an excellent support for a catalyst of ultra-small Pd clusters. The Pd species anchored on the precursor Pre-Pd@chitin were 0.6 nm in average size, while the reduced catalyst Red-Pd@chitin featured ultra-small particles of 1.3 nm in average size. X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) demonstrated that the Pd catalyst in both oxidative and reductive states retained good dispersity and ultra-small clusters. The catalyst was tested for the hydrogenation of p-nitroanisole, exhibiting an excellent initial rate (13× that of commercial Pd/C)and excellent turnover frequency reaching 52,000 h−1. Furthermore, the catalyst could be recycled and used more than 10 times with no decay of the catalytic activity, suggesting potential industrial applications.


Pd clusters chitin nanowires supported catalyst hydrogenation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Major Program of National Natural Science Foundation of China (No. 21334005), the Major International (Regional) Joint Research Project of National Natural Science Foundation of China (No. 21620102004), and the National Natural Science Foundation of China (Nos. 21390402, 201703159 and 21520102003). Special thanks to Prof. Nanfeng Zheng in Xiamen University and Prof. Hexiang Deng in Wuhan University for their discussing.

Supplementary material

12274_2018_1977_MOESM1_ESM.pdf (1.4 mb)
Ultra-small Pd clusters supported by chitin nanowires as highly efficient catalysts


  1. [1]
    Clark, J. H. Green chemistry: Challenges and opportunities. Green Chem. 1999, 1, 1–8.CrossRefGoogle Scholar
  2. [2]
    Poliakoff, M.; Licence, P. Sustainable technology: Green chemistry. Nature 2007, 450, 810–812.CrossRefGoogle Scholar
  3. [3]
    Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.CrossRefGoogle Scholar
  4. [4]
    Yan, H.; Cheng, H.; Yi, H.; Lin Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu, J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484–10487.CrossRefGoogle Scholar
  5. [5]
    Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–801.CrossRefGoogle Scholar
  6. [6]
    Chng, L. L.; Erathodiyil, N.; Ying, J. Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res. 2013, 46, 1825–1837.CrossRefGoogle Scholar
  7. [7]
    Zhai, Y. P.; Pierre, D.; Si, R.; Deng, W. L.; Ferrin, P.; Nilekar, A. U.; Peng, G. W.; Herron, J. A.; Bell, D. C.; Saltsburg, H. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 2010, 329, 1633–1636.CrossRefGoogle Scholar
  8. [8]
    Sun, Q. M.; Wang, N.; Bing, Q. M.; Si, R.; Liu, J. Y.; Bai, R. S.; Zhang, P.; Jia, M. J.; Yu, J. H. Subnanometric hybrid Pd-M(OH)2, M=Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem 2017, 3, 477–493.CrossRefGoogle Scholar
  9. [9]
    Jones, J.; Xiong, H. F.; DeLariva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G. S.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.CrossRefGoogle Scholar
  10. [10]
    Kim, M.; Hwang, S.; Yu, J. S. Novel ordered nanoporous graphitic C3N4 as a support for Pt-Ru anode catalyst in direct methanol fuel cell. J. Mater. Chem. 2007, 17, 1656–1659.CrossRefGoogle Scholar
  11. [11]
    Mateo, D.; Albero, J.; Garcia, H. Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy Environ. Sci. 2017, 10, 2392–2400.CrossRefGoogle Scholar
  12. [12]
    Yang, Z. Y.; Zheng, X. H.; Zheng, J. B. Facile synthesis of three-dimensional porous Au@Pt core-shell nanoflowers supported on graphene oxide for highly sensitive and selective detection of hydrazine. Chem. Eng. J. 2017, 327, 431–440.CrossRefGoogle Scholar
  13. [13]
    Li, L. X.; Huang, S. S.; Song, J. J.; Yang, N. T.; Liu, J. W.; Chen, Y. Y.; Sun, Y. H.; Jin, R. C.; Zhu, Y. Ultrasmall Au10 clusters anchored on pyramid-capped rectangular TiO2 for olefin oxidation. Nano Res. 2016, 9, 1182–1192.CrossRefGoogle Scholar
  14. [14]
    Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M. Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction. J. Am. Chem. Soc. 2013, 135, 3768–3771.CrossRefGoogle Scholar
  15. [15]
    Jang, W. J.; Kim, H. M.; Shim, J. O.; Yoo, S. Y.; Jeon, K. W.; Na, H. S.; Lee, Y. L.; Lee, D. W.; Roh, H. S.; Yoon, W. L. Deactivation of SiO2 supported Ni catalysts by structural change in the direct internal reforming reaction of molten carbonate fuel cell. Catal. Commun. 2017, 101, 44–47.CrossRefGoogle Scholar
  16. [16]
    Dhiman, M.; Polshettiwar, V. Ultrasmall nanoparticles and pseudo-single atoms of platinum supported on fibrous nanosilica (KCC-1/Pt): Engineering selectivity of hydrogenation reactions. J. Mater. Chem. A. 2016, 4, 12416–12424.CrossRefGoogle Scholar
  17. [17]
    Ray, K.; Deo, G. A potential descriptor for the CO2 hydrogenation to CH4 over Al2O3 supported Ni and Ni-based alloy catalysts. Appl. Catal. B-Environ. 2017, 218, 525–537.CrossRefGoogle Scholar
  18. [18]
    Adibi, P. T. Z.; Pingel, T.; Olsson, E.; Grönbeck, H.; Langhammer, C. Plasmonic nanospectroscopy of platinum catalyst nanoparticle sintering in a mesoporous alumina support. ACS Nano 2016, 10, 5063–5069.CrossRefGoogle Scholar
  19. [19]
    Canivet, J.; Aguado, S.; Schuurman, Y.; Farrusseng, D. MOF-supported selective ethylene dimerization single-site catalysts through one-pot postsynthetic modification. J. Am. Chem. Soc. 2013, 135, 4195–4198.CrossRefGoogle Scholar
  20. [20]
    Cui, X. L.; Zuo, W.; Tian, M.; Dong, Z. P.; Ma, J. T. Highly efficient and recyclable Ni MOF-derived N-doped magnetic mesoporous carbon-supported palladium catalysts for the hydrodechlorination of chlorophenols. J. Mol. Catal. A-Chem. 2016, 423, 386–392.CrossRefGoogle Scholar
  21. [21]
    Wang, Y. T.; Li, Y.; Liu, S. L.; Li, B. Fabrication of chitin microspheres and their multipurpose application as catalyst support and adsorbent. Carbohyd. Polym. 2015, 120, 53–59.CrossRefGoogle Scholar
  22. [22]
    Nikolov, S.; Petrov, M.; Lymperakis, L.; Friák, M.; Sachs, C.; Fabritius, H. O.; Raabe, D.; Neugebauer, J. Revealing the design principles of high-performance biological composites using ab initio and multiscale simulations: The example of lobster cuticle. Adv. Mater. 2010, 22, 519–526.CrossRefGoogle Scholar
  23. [23]
    Wu, X. Y.; Shi, Z. Q.; Fu, S. D.; Chen, J. L.; Berry, R. M.; Tam, K. C. Strategy for synthesizing porous cellulose nanocrystal supported metal nanocatalysts. ACS Sustain. Chem. Eng. 2016, 4, 5929–5935.CrossRefGoogle Scholar
  24. [24]
    Keshipour, S.; Khalteh, N. K. Oxidation of ethylbenzene to styrene oxide in the presence of cellulose-supported Pd magnetic nanoparticles. Appl. Organomet. Chem. 2016, 30, 653–656.CrossRefGoogle Scholar
  25. [25]
    Baran, T.; Sargin, I.; Kaya, M.; Mentes, A. Green heterogeneous Pd(II) catalyst produced from chitosan-cellulose micro beads for green synthesis of biaryls. Carbohyd. Polym. 2016, 152, 181–188.CrossRefGoogle Scholar
  26. [26]
    Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3+2] huisgen cycloaddition. Angew. Chem., Int. Ed. 2009, 48, 5916–5920.CrossRefGoogle Scholar
  27. [27]
    Kaushik, M.; Basu, K.; Benoit, C.; Cirtiu, C. M.; Vali, H.; Moores, A. Cellulose nanocrystals as chiral inducers: Enantioselective catalysis and transmission electron microscopy 3D characterization. J. Am. Chem. Soc. 2015, 137, 6124–6127.CrossRefGoogle Scholar
  28. [28]
    Yan, N.; Chen, X. Sustainability: Don’t waste seafood waste. Nature 2015, 524, 155–157.CrossRefGoogle Scholar
  29. [29]
    Duan, B.; Zheng, X.; Xia, Z. X.; Fan, X. L.; Guo, L.; Liu, J. F.; Wang, Y. F.; Ye, Q. F.; Zhang, L. N. Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/Urea aqueous solution as cell carriers. Angew. Chem., Int. Ed. 2015, 54, 5152–5156.CrossRefGoogle Scholar
  30. [30]
    Fang, Y.; Duan, B.; Lu, A.; Liu, M. L.; Liu, H. L.; Xu, X. J.; Zhang, L. N. Intermolecular interaction and the extended wormlike chain conformation of chitin in NaOH/urea aqueous solution. Biomacromolecules 2015, 16, 1410–1417.CrossRefGoogle Scholar
  31. [31]
    Guo, L.; Duan, B.; Zhang, L. N. Construction of controllable size silver nanoparticles immobilized on nanofibers of chitin microspheres via green pathway. Nano Res. 2016, 9, 2149–2161.CrossRefGoogle Scholar
  32. [32]
    Duan, B.; Liu, F.; He, M.; Zhang, L. N. Ag-Fe3O4 nanocomposites@chitin microspheres constructed by in situ one-pot synthesis for rapid hydrogenation catalysis. Green Chem. 2014, 16, 2835–2845.CrossRefGoogle Scholar
  33. [33]
    Heux, L; Brugnerotto, J; Desbrieres, J; Versali, M. F.; Rinaudo, M. Solid state NMR for determination of degree of acetylation of chitin and chitosan. Biomacromolecules 2000, 1, 746–751.CrossRefGoogle Scholar
  34. [34]
    Zhang, G. H.; Yi, H.; Zhang, G. T.; Deng, Y.; Bai, R. P.; Zhang, H.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lei, A. W. Direct observation of reduction of Cu(II) to Cu(I) by terminal alkynes. J. Am. Chem. Soc. 2014, 136, 924–926.CrossRefGoogle Scholar
  35. [35]
    Nelson, R. C.; Miller, J. T. An introduction to X-ray absorption spectroscopy and its in situ application to organometallic compounds and homogeneous catalysts. Catal. Sci. Technol. 2012, 2, 461–470.CrossRefGoogle Scholar
  36. [36]
    Guo, M.; Dong, H.; Li, J.; Cheng, B.; Huang, Y. Q.; Feng, Y. Q.; Lei, A. W. Spectroscopic observation of iodosylarene metalloporphyrin adducts and manganese(V)-oxo porphyrin species in a cytochrome P450 analogue. Nat. Commun. 2012, 3, 1190.CrossRefGoogle Scholar
  37. [37]
    Li, J.; Jin, L. Q.; Liu, C.; Lei, A. W. Quantitative kinetic investigation on transmetalation of ArZnX in a Pd-catalysed oxidative coupling. Chem. Commun. 2013, 49, 9615–9617.CrossRefGoogle Scholar
  38. [38]
    Zhang, G. H.; Li, J.; Deng, Y.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lei, A. W. Structure-kinetic relationship study of organozinc reagents. Chem. Commun. 2014, 50, 8709–8711.CrossRefGoogle Scholar
  39. [39]
    Huang, Z. L.; Jin, L. Q.; Feng, Y.; Peng, P.; Yi, H.; Lei, A. W. Iron-catalyzed oxidative radical cross-coupling/cyclization between phenols and olefins. Angew. Chem., Int. Ed. 2013, 52, 7151–7155.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina
  2. 2.“National Synchrotron Radiation Research Center”TaiwanChina

Personalised recommendations