Advertisement

Nano Research

, Volume 11, Issue 6, pp 3132–3144 | Cite as

A versatile method for the encapsulation of various non-precious metal nanoparticles inside single-walled carbon nanotubes

Research Article

Abstract

We present a facile and versatile method for introducing various non-precious metal nanoparticles (NPs) in small nanotubes, such as single-walled carbon nanotubes (SWNTs), including 3d-metals (V, Mn, Fe and Co), 4d-metals (Mo), and 5d-metals (W). This is realized by oxidizing encapsulated cycloalkene metal carbonyl complexes below their sublimation temperatures. This novel technique is significant because it avoids the diffusion and deposition of metal species on the outer walls of nanotubes, which has been challenging to achieve using the conventional filling methods. High-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray spectroscopy (EDX), Raman, and X-ray photoelectron spectroscopy (XPS) analyses revealed high filling efficiencies (> 95% SWNTs filled with metal NPs). This method also provides a unique approach to fabricate highly dispersed and uniform SWNT–metal nanoparticle encapsulates with lower valence states, which are often not stable in the bulk.

Keywords

single-walled carbon nanotubes encapsulation non-precious metals confinement effect nanoparticles 

Notes

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of China (No. 2016YFA0202803), and the National Natural Science Foundation of China (Nos. 21425312 and 21621063). We thank Dr. Haobo Li for help in drawing the scheme and Dr. Tie Yu for fruitful discussions.

Supplementary material

12274_2018_1975_MOESM1_ESM.pdf (1.8 mb)
A versatile method for the encapsulation of various non-precious metal nanoparticles inside single-walled carbon nanotubes

References

  1. [1]
    Monthioux, M.; Flahaut, E.; Cleuziou, J. P. Hybrid carbon nanotubes: Strategy, progress, and perspectives. J. Mater. Res. 2006, 21, 2774–2793.CrossRefGoogle Scholar
  2. [2]
    Ilie, A.; Crampin, S.; Karlsson, L.; Wilson, M. Repair and stabilization in confined nanoscale systems—Inorganic nanowires within single-walled carbon nanotubes. Nano Res. 2012, 5, 833–844.CrossRefGoogle Scholar
  3. [3]
    Shi, L.; Sheng, L. M.; Yu, L. M.; An, K.; Ando, Y.; Zhao, X. L. Ultra-thin double-walled carbon nanotubes: A novel nanocontainer for preparing atomic wires. Nano Res. 2011, 4, 759–766.CrossRefGoogle Scholar
  4. [4]
    Kitaura, R.; Ogawa, D.; Kobayashi, K.; Saito, T.; Ohshima, S.; Nakamura, T.; Yoshikawa, H.; Awaga, K.; Shinohara, H. High yield synthesis and characterization of the structural and magnetic properties of crystalline Ercl3 nanowires in single-walled carbon nanotube templates. Nano Res. 2008, 1, 152–157.CrossRefGoogle Scholar
  5. [5]
    Pan, X. L.; Bao, X. H. The effects of confinement inside carbon nanotubes on catalysis. Acc. Chem. Res. 2011, 44, 553–562.CrossRefGoogle Scholar
  6. [6]
    Serp, P.; Castillejos, E. Catalysis in carbon nanotubes. Chemcatchem 2010, 2, 41–47.CrossRefGoogle Scholar
  7. [7]
    Lota, G.; Frackowiak, E.; Mittal, J.; Monthioux, M. High performance supercapacitor from chromium oxide-nanotubes based electrodes. Chem. Phys. Lett. 2007, 434, 73–77.CrossRefGoogle Scholar
  8. [8]
    Su, D. S.; Centi, G. A perspective on carbon materials for future energy application. J. Energy Chem. 2013, 22, 151–173.CrossRefGoogle Scholar
  9. [9]
    Hatakeyama, R.; Li, Y. F. Synthesis and electronic-property control of Cs-encapsulated single- and double-walled carbon nanotubes by plasma ion irradiation. J. Appl. Phys. 2007, 102, 034309.CrossRefGoogle Scholar
  10. [10]
    Sitharaman, B.; Kissell, K. R.; Hartman, K. B.; Tran, L. A.; Baikalov, A.; Rusakova, I.; Sun, Y.; Khant, H. A.; Ludtke, S. J.; Chiu, W. et al. Superparamagnetic gadonanotubes are high-performance mri contrast agents. Chem. Commun. 2005, 3915–3917.Google Scholar
  11. [11]
    Sithararnan, B.; Wilson, L. J. Gadonanotubes as new high-performance mri contrast agents. Int. J. Nanomedicine 2006, 1, 291–295.Google Scholar
  12. [12]
    Britz, D. A.; Khlobystov, A. N. Noncovalent interactions of molecules with single walled carbon nanotubes. Chem. Soc. Rev. 2006, 35, 637–659.CrossRefGoogle Scholar
  13. [13]
    Miners, S. A.; Rance, G. A.; Khlobystov, A. N. Chemical reactions confined within carbon nanotubes. Chem. Soc. Rev. 2016, 45, 4727–4746.CrossRefGoogle Scholar
  14. [14]
    Botos, A.; Biskupek, J.; Chamberlain, T. W.; Rance, G. A.; Stoppiello, C. T.; Sloan, J.; Liu, Z.; Suenaga, K.; Kaiser, U.; Khlobystov, A. N. Carbon nanotubes as electrically active nanoreactors for multi-step inorganic synthesis: Sequential transformations of molecules to nanoclusters and nanoclusters to nanoribbons. J. Am. Chem. Soc. 2016, 138, 8175–8183.CrossRefGoogle Scholar
  15. [15]
    Kharlamova, M. V.; Kramberger, C.; Saito, T.; Sato, Y.; Suenaga, K.; Pichler, T.; Shiozawa, H. Chirality-dependent growth of single-wall carbon nanotubes as revealed inside nano-test tubes. Nanoscale 2017, 9, 7998–8006.CrossRefGoogle Scholar
  16. [16]
    Stoppiello, C. T.; Biskupek, J.; Li, Z. Y.; Rance, G. A.; Botos, A.; Fogarty, R. M.; Bourne, R. A.; Yuan, J.; Lovelock, K. R. J.; Thompson, P. et al. A one-pot-one-reactant synthesis of platinum compounds at the nanoscale. Nanoscale 2017, 9, 14385–14394.CrossRefGoogle Scholar
  17. [17]
    Xiao, J. P.; Pan, X. L.; Zhang, F.; Li, H. B.; Bao, X. H. Size-dependence of carbon nanotube confinement in catalysis. Chem. Sci. 2017, 8, 278–283.CrossRefGoogle Scholar
  18. [18]
    Ajayan, P. M.; Ebbesen, T. W.; Ichihashi, T.; Iijima, S.; Tanigaki, K.; Hiura, H. Opening carbon nanotubes with oxygen and implications for filling. Nature 1993, 362, 522–525.CrossRefGoogle Scholar
  19. [19]
    Saito, Y.; Yoshikawa, T. Bamboo-shaped carbon tube filled partially with nickel. J. Cryst. Growth 1993, 134, 154–156.CrossRefGoogle Scholar
  20. [20]
    Seraphin, S.; Zhou, D.; Jiao, J.; Withers, J. C.; Loutfy, R. Yttrium carbide in nanotubes. Nature 1993, 362, 503.CrossRefGoogle Scholar
  21. [21]
    Tsang, S. C.; Chen, Y. K.; Harris, P. J. F.; Green, M. L. H. A simple chemical method of opening and filling carbon nanotubes. Nature 1994, 372, 159–162.CrossRefGoogle Scholar
  22. [22]
    Sloan, J.; Cook, J.; Green, M. L. H.; Hutchison, J. L.; Tenne, R. Crystallisation inside fullerene related structures. J. Mater. Chem. 1997, 7, 1089–1095.CrossRefGoogle Scholar
  23. [23]
    Ugarte, D.; Stöckli, T.; Bonard, J. M.; Chatelain, A.; de Heer, W. A. Filling carbon nanotubes. Appl. Phys. A: Mater. Sci. Process 1998, 67, 101–105.CrossRefGoogle Scholar
  24. [24]
    Pham-Huu, C.; Keller, N.; Estournes, C.; Ehret, G.; Ledoux, M. J. Synthesis of CoFe2O4 nanowire in carbon nanotubes. A new use of the confinement effect. Chem. Commun. 2002, 1882–1883.Google Scholar
  25. [25]
    Fröhlich, T.; Scharff, P.; Schliefke, W.; Romanus, H.; Gupta, V.; Siegmund, C.; Ambacher, O.; Spiess, L. Insertion of C60 into multi-wall carbon nanotubes—A synthesis of C60@mwcnt. Carbon 2004, 42, 2759–2762.CrossRefGoogle Scholar
  26. [26]
    Kim, B. M.; Qian, S. Z.; Bau, H. H. Filling carbon nanotubes with particles. Nano Lett. 2005, 5, 873–878.CrossRefGoogle Scholar
  27. [27]
    La Torre, A.; Rance, G. A.; El Harfi, J.; Li, J. N.; Irvine, D. J.; Brown, P. D.; Khlobystov, A. N. Transport and encapsulation of gold nanoparticles in carbon nanotubes. Nanoscale 2010, 2, 1006–1010.CrossRefGoogle Scholar
  28. [28]
    Liao, G. M.; Pan, Y. Y.; Wu, Q.; Li, S. Y.; Weng, Y. Y.; Zhang, X. H.; Yang, Z. H.; Guo, J.; Chen, M. Z.; Tang, M. H. et al. A novel method to encapsulate a Au nanorod array in 15 nm radius multiwalled carbon nanotubes. Nanoscale 2014, 6, 14872–14876.CrossRefGoogle Scholar
  29. [29]
    Sloan, J.; Hammer, J.; Zwiefka-Sibley, M.; Green, M. L. H.; Sloan, J. The opening and filling of single walled carbon nanotubes (SWTs). Chem. Commun. 1998, 347–348.Google Scholar
  30. [30]
    Sloan, J.; Wright, D. M.; Bailey, S.; Brown, G.; York, A. P. E.; Coleman, K. S.; Green, M. L. H.; Sloan, J.; Wright, D. M.; Hutchison, J. L. et al. Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem. Commun. 1999, 699–700.Google Scholar
  31. [31]
    Govindaraj, A.; Satishkumar, B. C.; Nath, M.; Rao, C. N. R. Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem. Mater. 2000, 12, 202–205.CrossRefGoogle Scholar
  32. [32]
    Zhang, H. B.; Pan, X. L.; Bao, X. H. Facile filling of metal particles in small carbon nanotubes for catalysis. J. Energy Chem. 2013, 22, 251–256.CrossRefGoogle Scholar
  33. [33]
    Mittal, J.; Monthioux, M.; Allouche, H.; Stephan, O. Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air. Chem. Phys. Lett. 2001, 339, 311–318.CrossRefGoogle Scholar
  34. [34]
    Borowiak-Palen, E.; Bachmatiuk, A.; Rüemmeli, M. H.; Gemming, T.; Pichler, T.; Kalenczuk, R. J. Iron filled singlewalled carbon nanotubes—Synthesis and characteristic properties. Phys. Status Solidi B 2006, 243, 3277–3280.CrossRefGoogle Scholar
  35. [35]
    Borowiak-Palen, E.; Mendoza, E.; Bachmatiuk, A.; Rummeli, M. H.; Gemming, T.; Nogues, J.; Skumryev, V.; Kalenczuk, R. J.; Pichler, T.; Silva, S. R. P. Iron filled single-wall carbon nanotubes—A novel ferromagnetic medium. Chem. Phys. Lett. 2006, 421, 129–133.CrossRefGoogle Scholar
  36. [36]
    Zoberbier, T.; Chamberlain, T. W.; Biskupek, J.; Suyetin, M.; Majouga, A. G.; Besley, E.; Kaiser, U.; Khlobystov, A. N. Investigation of the interactions and bonding between carbon and group viii metals at the atomic scale. Small 2016, 12, 1649–1657.CrossRefGoogle Scholar
  37. [37]
    Loebick, C. Z.; Majewska, M.; Ren, F.; Haller, G. L.; Pfefferle, L. D. Fabrication of discrete nanosized cobalt particles encapsulated inside single-walled carbon nanotubes. J. Phys. Chem. C 2010, 114, 11092–11097.CrossRefGoogle Scholar
  38. [38]
    Cleuziou, J.-P.; Wernsdorfer, W.; Ondarçuhu, T.; Monthioux, M. Electrical detection of individual magnetic nanoparticles encapsulated in carbon nanotubes. ACS Nano 2011, 5, 2348–2355.CrossRefGoogle Scholar
  39. [39]
    Hao, J.; Lian, Y. F.; Guan, L. H.; Yue, D. M.; Guo, X. H.; Zhao, S. X.; Zhao, Y. L.; Ibrahim, K.; Wang, J. O.; Qian, H. J. et al. Supercritical synthesis and characterization of swntbased one dimensional nanomaterials. Nanoscale 2011, 3, 3103–3108.CrossRefGoogle Scholar
  40. [40]
    Kharlamova, M. V.; Niu, J. J. New method of the directional modification of the electronic structure of single-walled carbon nanotubes by filling channels with metallic copper from a liquid phase. JETP Lett. 2012, 95, 314–319.CrossRefGoogle Scholar
  41. [41]
    Muramatsu, H.; Hayashi, T.; Kim, Y. A.; Shimamoto, D.; Endo, M.; Terrones, M.; Dresselhaus, M. S. Synthesis and isolation of molybdenum atomic wires. Nano Lett. 2008, 8, 237–240.CrossRefGoogle Scholar
  42. [42]
    Chamberlain, T. W.; Zoberbier, T.; Biskupek, J.; Botos, A.; Kaiser, U.; Khlobystov, A. N. Formation of uncapped nanometre-sized metal particles by decomposition of metal carbonyls in carbon nanotubes. Chem. Sci. 2012, 3, 1919–1924.CrossRefGoogle Scholar
  43. [43]
    Zoberbier, T.; Chamberlain, T. W.; Biskupek, J.; Kuganathan, N.; Eyhusen, S.; Bichoutskaia, E.; Kaiser, U.; Khlobystov, A. N. Interactions and reactions of transition metal clusters with the interior of single-walled carbon nanotubes imaged at the atomic scale. J. Am. Chem. Soc. 2012, 134, 3073–3079.CrossRefGoogle Scholar
  44. [44]
    Chamberlain, T. W.; Earley, J. H.; Anderson, D. P.; Khlobystov, A. N.; Bourne, R. A. Catalytic nanoreactors in continuous flow: Hydrogenation inside single-walled carbon nanotubes using supercritical CO2. Chem. Commun. 2014, 50, 5200–5202.CrossRefGoogle Scholar
  45. [45]
    Sinitsa, A. S.; Chamberlain, T. W.; Zoberbier, T.; Lebedeva, I. V.; Popov, A. M.; Knizhnik, A. A.; McSweeney, R. L.; Biskupek, J.; Kaiser, U.; Khlobystov, A. N. Formation of nickel clusters wrapped in carbon cages: Toward new endohedral metallofullerene synthesis. Nano Lett. 2017, 17, 1082–1089.CrossRefGoogle Scholar
  46. [46]
    Li, Y. F.; Hatakeyama, R.; Kaneko, T.; Izumida, T.; Okada, T.; Kato, T. Synthesis and electronic properties of ferrocene-filled double-walled carbon nanotubes. Nanotechnology 2006, 17, 4143–4147.CrossRefGoogle Scholar
  47. [47]
    Shiozawa, H.; Pichler, T.; Grüneis, A.; Pfeiffer, R.; Kuzmany, H.; Liu, Z.; Suenaga, K.; Kataura, H. A catalytic reaction inside a single-walled carbon nanotube. Adv. Mater. 2008, 20, 1443–1449.CrossRefGoogle Scholar
  48. [48]
    Briones-Leon, A.; Ayala, P.; Liu, X. J.; Yanagi, K.; Weschke, E.; Eisterer, M.; Jiang, H.; Kataura, H.; Pichler, T.; Shiozawa, H. Orbital and spin magnetic moments of transforming one-dimensional iron inside metallic and semiconducting carbon nanotubes. Phys. Rev. B 2013, 87, 195435.CrossRefGoogle Scholar
  49. [49]
    McSweeney, R. L.; Chamberlain, T. W.; Davies, E. S.; Khlobystov, A. N. Single-walled carbon nanotubes as nano-electrode and nano-reactor to control the pathways of a redox reaction. Chem. Commun. 2014, 50, 14338–14340.CrossRefGoogle Scholar
  50. [50]
    Chiang, I. W.; Brinson, B. E.; Huang, A. Y.; Willis, P. A.; Bronikowski, M. J.; Margrave, J. L.; Smalley, R. E.; Hauge, R. H. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J. Phys. Chem. B 2001, 105, 8297–8301.CrossRefGoogle Scholar
  51. [51]
    Ziegler, K. J.; Gu, Z. N.; Peng, H. Q.; Flor, E. L.; Hauge, R. H.; Smalley, R. E. Controlled oxidative cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 1541–1547.CrossRefGoogle Scholar
  52. [52]
    Smith, B. W.; Luzzi, D. E. Formation mechanism of fullerene peapods and coaxial tubes: A path to large scale synthesis. Chem. Phys. Lett. 2000, 321, 169–174.CrossRefGoogle Scholar
  53. [53]
    Li, Y. F.; Hatakeyama, R.; Shishido, J.; Kato, T.; Kaneko, T. Air-stable p–n junction diodes based on single-walled carbon nanotubes encapsulating Fe nanoparticles. Appl. Phys. Lett. 2007, 90, 173127.CrossRefGoogle Scholar
  54. [54]
    Chen, W.; Pan, X. L.; Bao, X. H. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes. J. Am. Chem. Soc. 2007, 129, 7421–7426.CrossRefGoogle Scholar
  55. [55]
    Chen, W.; Fan, Z. L.; Zhang, B.; Ma, G. J.; Takanabe, K.; Zhang, X. X.; Lai, Z. P. Enhanced visible-light activity of titania via confinement inside carbon nanotubes. J. Am. Chem. Soc. 2011, 133, 14896–14899.CrossRefGoogle Scholar
  56. [56]
    Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.CrossRefGoogle Scholar
  57. [57]
    Kumari, L.; Ma, Y.-R.; Tsai, C.-C.; Lin, Y.-W.; Wu, S. Y.; Cheng, K.-W.; Liou, Y. X-ray diffraction and Raman scattering studies on large-area array and nanobranched structure of 1D MoO2 nanorods. Nanotechnology 2007, 18, 115717.CrossRefGoogle Scholar
  58. [58]
    Fukata, N.; Oshima, T.; Murakami, K.; Kizuka, T.; Tsurui, T.; Ito, S. Phonon confinement effect of silicon nanowires synthesized by laser ablation. Appl. Phys. Lett. 2005, 86, 213112.CrossRefGoogle Scholar
  59. [59]
    Parker, J. C.; Siegel, R. W. Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes. J. Mater. Res. 1990, 5, 1246–1252.CrossRefGoogle Scholar
  60. [60]
    Xiao, J. P.; Pan, X. L.; Guo, S. J.; Ren, P. J.; Bao, X. H. Toward fundamentals of confined catalysis in carbon nanotubes. J. Am. Chem. Soc. 2015, 137, 477–482.CrossRefGoogle Scholar
  61. [61]
    McIntyre, N. S.; Johnston, D. D.; Coatsworth, L. L.; Davidson, R. D.; Brown, J. R. X-ray photoelectron spectroscopic studies of thin film oxides of cobalt and molybdenum. Surf. Interface Anal. 1990, 15, 265–272.CrossRefGoogle Scholar
  62. [62]
    López-Carreño, L. D.; Benı́tez, G.; Viscido, L.; Heras, J. M.; Yubero, F.; Espinós, J. P.; González-Elipe, A. R. Different oxidation states of polycrystalline molybdenum treated by O2-plasma or O2-ion bombardment. Surf. Sci. 1998, 402–404, 174–177.CrossRefGoogle Scholar
  63. [63]
    Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.CrossRefGoogle Scholar
  64. [64]
    Yue, C. C.; Zhu, X. C.; Rigutto, M.; Hensen, E. Acid catalytic properties of reduced tungsten and niobium-tungsten oxides. Appl. Catal. B: Environ. 2015, 163, 370–381.CrossRefGoogle Scholar
  65. [65]
    Silversmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; De Gryse, R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron. Spectrosc. Relat. Phenom. 2004, 135, 167–175.CrossRefGoogle Scholar
  66. [66]
    Peña, D. A.; Uphade, B. S.; Smirniotis, P. G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals. J. Catal. 2004, 221, 421–431.Google Scholar
  67. [67]
    Lin, T.-C.; Seshadri, G.; Kelber, J. A. A consistent method for quantitative XPS peak analysis of thin oxide films on clean polycrystalline iron surfaces. Appl. Surf. Sci. 1997, 119, 83–92.CrossRefGoogle Scholar
  68. [68]
    Long, M. C.; Cai, W. M.; Cai, J.; Zhou, B. X.; Chai, X. Y.; Wu, Y. H. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 2006, 110, 20211–20216.CrossRefGoogle Scholar
  69. [69]
    Morales, F.; de Groot, F. M. F.; Gijzeman, O. L. J.; Mens, A.; Stephan, O.; Weckhuysen, B. M. Mn promotion effects in Co/TiO2 fischer–tropsch catalysts as investigated by xps and STEM-EELS. J. Catal. 2005, 230, 301–308.CrossRefGoogle Scholar
  70. [70]
    Zhang, F.; Pan, X. L.; Hu, Y. F.; Yu, L.; Chen, X. Q.; Jiang, P.; Zhang, H. B.; Deng, S. B.; Zhang, J.; Bolin, T. B. et al. Tuning the redox activity of encapsulated metal clusters via the metallic and semiconducting character of carbon nanotubes. Proc. Natl. Acad. Sci. USA 2013, 110, 14861–14866.CrossRefGoogle Scholar
  71. [71]
    Chen, W. F.; Wang, C. H.; Sasaki, K.; Marinkovic, N.; Xu, W.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ. Sci. 2013, 6, 943–951.CrossRefGoogle Scholar
  72. [72]
    Youn, D. H.; Han, S.; Kim, J. Y.; Kim, J. Y.; Park, H.; Choi, S. H.; Lee, J. S. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube–graphene hybrid support. ACS Nano 2014, 8, 5164–5173.CrossRefGoogle Scholar
  73. [73]
    Šljukić, B.; Vujković, M.; Amaral, L.; Santos, D. M. F.; Rocha, R. P.; Sequeira, C. A. C.; Figueiredo, J. L. Carbonsupported Mo2C electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 15505–15512.CrossRefGoogle Scholar
  74. [74]
    Shi, L.; Rohringer, P.; Suenaga, K.; Niimi, Y.; Kotakoski, J.; Meyer, J. C.; Peterlik, H.; Wanko, M.; Cahangirov, S.; Rubio, A. et al. Confined linear carbon chains as a route to bulk carbyne. Nat. Mater. 2016, 15, 634–639.CrossRefGoogle Scholar
  75. [75]
    Yang, F. K.; Sliozberg, K.; Antoni, H.; Xia, W.; Muhler, M. MoxC/CNT composites as active electrocatalysts for the hydrogen evolution reaction under alkaline conditions. Electroanalysis 2016, 28, 2293–2296.CrossRefGoogle Scholar
  76. [76]
    McIntyre, N. S.; Zetaruk, D. G. X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 1977, 49, 1521–1529.CrossRefGoogle Scholar
  77. [77]
    Karim, A. M.; Su, Y.; Engelhard, M. H.; King, D. L.; Wang, Y. Catalytic roles of Co0 and Co2+ during steam reforming of ethanol on Co/MgO catalysts. ACS Catal. 2011, 1, 279–286.CrossRefGoogle Scholar
  78. [78]
    Turchanin, M. A.; Agraval, P. G. Cohesive energy, properties, and formation energy of transition metal alloys. Powder Metall. Met. Ceram. 2008, 47, 26–39.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations