Advertisement

Nano Research

, Volume 11, Issue 6, pp 3122–3131 | Cite as

Facile synthesis of Pd concave nanocubes: From kinetics to mechanistic understanding and rationally designed protocol

  • Madeline Vara
  • Younan Xia
Research Article
  • 311 Downloads

Abstract

We report a rationally designed one-pot method for the facile synthesis of Pd concave nanocubes in an aqueous solution at room temperature by manipulating the reduction kinetics through the selection of a proper combination of a salt precursor (PdBr42–) and reductant (sodium ascorbate). Our kinetic analysis demonstrates that, through this selection, the nucleation and growth of Pd nanocrystals could be effectively separated into two kinetic regimes involving distinctive reduction pathways: i) solution reduction for the initial formation of single-crystal seeds and ii) surface reduction for the formation of concave nanocrystals via autocatalytic growth from the single-crystal seeds. The suppressed surface diffusion at room temperature, when coupled with the capping effect of bromide ions, ultimately leads to the formation of concave nanocubes with an asymmetric shape and high-index facets, whose synthesis would otherwise require multiple steps and the use of elevated temperatures.

Keywords

Pd concave cubes growth kinetics nanocrystal synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported in part by a grant from the National Science Foundation (No. DMR-1506018) and startup funds from Georgia Tech. The electron microscopy studies were performed at the Georgia Tech’s Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (No. ECCS-1542174).

References

  1. [1]
    Xiong, Y.; Xia, Y. Shape-controlled synthesis of metal nanostructures: The case of palladium. Adv. Mater. 2007, 19, 3385–3391.CrossRefGoogle Scholar
  2. [2]
    Watt, J.; Young, N.; Haigh, S.; Kirkland, A.; Tilley, R. D. Synthesis and structural characterization of branched palladium nanostructures. D. Adv. Mater. 2009, 21, 2288–2293.CrossRefGoogle Scholar
  3. [3]
    Niu, W. X.; Zhang, L.; Xu, G. B. Shape-controlled synthesis of single-crystalline palladium nanocrystals. ACS Nano 2010, 4, 1987–1996.CrossRefGoogle Scholar
  4. [4]
    Niu, Z. Q.; Peng, Q.; Gong, M.; Rong, H. P.; Li, Y. D. Oleylamine- mediated shape evolution of palladium nanocrystals. Angew. Chem., Int. Ed. 2011, 50, 6315–6319.CrossRefGoogle Scholar
  5. [5]
    Wang, Y.; Xie, S. F.; Liu, J. Y.; Park, J.; Huang, C. Z.; Xia, Y. N. Shape-controlled synthesis of palladium nanocrystals: A mechanistic understanding of the evolution from octahedrons to tetrahedrons. Nano Lett. 2013, 13, 2276–2281.CrossRefGoogle Scholar
  6. [6]
    Huang, H. W.; Wang, Y.; Ruditskiy, A.; Peng, H.-C.; Zhao, X.; Zhang, L.; Liu, J. Y.; Ye, Z. Z.; Xia, Y. N. Polyol syntheses of palladium decahedra and icosahedra as pure samples by maneuvering the reaction kinetics with additives. ACS Nano 2014, 8, 7041–7050.CrossRefGoogle Scholar
  7. [7]
    Lim, B.; Jiang, M. J.; Tao, J.; Camargo, P. H. C.; Zhu, Y. M.; Xia, Y. M. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv. Funct. Mater. 2009, 19, 189–200.CrossRefGoogle Scholar
  8. [8]
    Cheong, S.; Watt, J. D.; Tilley, R. D. Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale 2010, 2, 2045–2053.CrossRefGoogle Scholar
  9. [9]
    Tian, N.; Zhou, Z.-Y.; Yu, N.-F.; Wang, L.-Y.; Sun, S.-G. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high- index facets and high catalytic activity for ethanol electrooxidation. J. Am. Chem. Soc. 2010, 132, 7580–7581.CrossRefGoogle Scholar
  10. [10]
    Wang, F.; Li, C. H.; Sun, L.-D.; Wu, H. S.; Ming, T.; Wang, J. F.; Yu, J. C.; Yan, C.-H. Heteroepitaxial growth of high-index-faceted palladium nanoshells and their catalytic performance. J. Am. Chem. Soc. 2011, 133, 1106–1111.CrossRefGoogle Scholar
  11. [11]
    Deng, Y.-J.; Tian, N.; Zhou, Z.-Y.; Huang, R.; Liu, Z.-L.; Xiao, J.; Sun, S.-G. Alloy tetrahexahedral Pd-Pt catalysts: Enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure. Chem. Sci. 2012, 3, 1157–1161.CrossRefGoogle Scholar
  12. [12]
    Wang, F.; Li, C. H.; Sun, L.-D.; Xu, C.-H.; Wang, J. F.; Yu, J. C.; Yan, C.-H. Porous single-crystalline palladium nanoparticles with high catalytic activities. Angew. Chem., Int. Ed. 2012, 51, 4872–4876.CrossRefGoogle Scholar
  13. [13]
    Collins, G.; Schmidt, M.; O’Dwyer, C.; McGlacken, G.; Holmes, J. D. Enhanced catalytic activity of high-index faceted palladium nanoparticles in suzuki–miyaura coupling due to efficient leaching mechanism. ACS Catal. 2014, 4, 3105–3111.CrossRefGoogle Scholar
  14. [14]
    Quan, Z. W.; Wang, Y. X.; Fang, J. Y. High-index faceted noble metal nanocrystals. Acc. Chem. Res. 2013, 46, 191–202.CrossRefGoogle Scholar
  15. [15]
    Xia, Y. N.; Gilroy, K. D.; Peng, H.-C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 60–95.CrossRefGoogle Scholar
  16. [16]
    Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. D. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.CrossRefGoogle Scholar
  17. [17]
    Berhault, G.; Bausach, M.; Bisson, L.; Becerra, L.; Thomazeau, C.; Uzio, D. Seed-mediated synthesis of Pd nanocrystals: Factors influencing a kinetic- or thermodynamic-controlled growth regime. J. Phys. Chem. C 2007, 111, 5915–5925.CrossRefGoogle Scholar
  18. [18]
    Xia, Y. N.; Xia, X. H.; Peng, H.-C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966.CrossRefGoogle Scholar
  19. [19]
    Zhang, J. F.; Feng, C.; Deng, Y. D.; Liu, L.; Wu, Y. T.; Shen, B.; Zhong, C.; Hu, W. B. Shape-controlled synthesis of palladium single-crystalline nanoparticles: The effect of HCl oxidative etching and facet-dependent catalytic properties. Chem. Mater. 2014, 26, 1213–1218.CrossRefGoogle Scholar
  20. [20]
    Ruditskiy, A.; Vara, M.; Huang, H. W.; Xia, Y. N. Oxidative etching of Pd decahedral nanocrystals with a penta-twinned structure and its impact on their growth behavior. Chemistry of Materials 2017, 29, 5394–5400.CrossRefGoogle Scholar
  21. [21]
    Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angew. Chem., Int. Ed. 2011, 50, 7850–7854.CrossRefGoogle Scholar
  22. [22]
    Niu, W. X.; Zhang, W. Q.; Firdoz, S.; Lu, X. M. Controlled synthesis of palladium concave nanocubes with sub-10-nanometer edges and corners for tunable plasmonic property. Chem. Mater. 2014, 26, 2180–2186.CrossRefGoogle Scholar
  23. [23]
    Sreedhala, S.; Sudheeshkumar, V.; Vinod, C. P. Structure sensitive chemical reactivity by palladium concave nanocubes and nanoflowers synthesised by a seed mediated procedure in aqueous medium. Nanoscale 2014, 6, 7496–7502.CrossRefGoogle Scholar
  24. [24]
    Zhang, J. W.; Zhang, L.; Xie, S. F.; Kuang, Q.; Han, X. G.; Xie, Z. X.; Zheng, L. S. Synthesis of concave palladium nanocubes with high-index surfaces and high electrocatalytic activities. Chem.—Eur. J. 2011, 17, 9915–9919.CrossRefGoogle Scholar
  25. [25]
    Liu, S.-Y.; Shen, Y.-T.; Chiu, C.-Y.; Rej, S.; Lin, P.-H.; Tsao, Y.-C.; Huang, M. H. Direct synthesis of palladium nanocrystals in aqueous solution with systematic shape evolution. Langmuir 2015, 31, 6538–6545.CrossRefGoogle Scholar
  26. [26]
    Xie, X. B.; Gao, G. H.; Pan, Z. Y.; Wang, T. J.; Meng, X. Q.; Cai, L. T. Large-scale synthesis of palladium concave nanocubes with high-index facets for sustainable enhanced catalytic performance. Sci. Rep. 2015, 5, 8515.CrossRefGoogle Scholar
  27. [27]
    Elding, L. I. Palladium(II) halide complexes. I. Stabilities and spectra of palladium(II) chloro and bromo aqua complexes. Inorg. Chim. Acta. 1972, 6, 647–651.CrossRefGoogle Scholar
  28. [28]
    Elding, L. I. Stabilities of platinum(II) chloro and bromo complexes and kinetics for anation of the tetraaquaplatinum(II) ion by halides and thiocyanate. Inorg. Chim. Acta. 1978, 28, 255–262.CrossRefGoogle Scholar
  29. [29]
    Elding, L. I.; Olsson, L. F. Electronic absorption spectra of square-planar chloro-aqua and bromo-aqua complexes of palladium(II) and platinum(II). J. Phys. Chem. 1978, 82, 69–74.CrossRefGoogle Scholar
  30. [30]
    Vara, M.; Lu, P.; Yang, X.; Lee, C.-T.; Xia, Y. N. A photochemical, room-temperature, and aqueous route to the synthesis of Pd nanocubes enriched with atomic steps and terraces on the side faces. Chem. Mater. 2017, 29, 4563–4571.CrossRefGoogle Scholar
  31. [31]
    Peng, H.-C.; Li, Z. M.; Aldahondo, G.; Huang, H. W.; Xia, Y. N. Seed-mediated synthesis of Pd nanocrystals: The effect of surface capping on the heterogeneous nucleation and growth. J. Phys. Chem. C 2016, 120, 11754–11761.CrossRefGoogle Scholar
  32. [32]
    Wang, Y.; Peng, H.-C.; Liu, J. Y.; Huang, C. Z.; Xia, Y. N. Use of reduction rate as a quantitative knob for controlling the twin structure and shape of palladium nanocrystals. Nano Lett. 2015, 15, 1445–1450.CrossRefGoogle Scholar
  33. [33]
    Yang, T.-H.; Peng, H.-C.; Zhou, S.; Lee, C.-T.; Bao, S. X.; Lee, Y.-H.; Wu, J.-M.; Xia, Y. N. Toward a quantitative understanding of the reduction pathways of a salt precursor in the synthesis of metal nanocrystals. Nano Lett. 2017, 17, 334–340.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  2. 2.The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA

Personalised recommendations