Advertisement

Nano Research

, Volume 11, Issue 6, pp 3396–3410 | Cite as

Effects of gold core size on regulating the performance of doxorubicin-conjugated gold nanoparticles

  • Dongyan Wu
  • Huaisong Wang
  • Xiaoshuang Hou
  • Huan Chen
  • Yu Ma
  • Yanglong Hou
  • Jin Hong
  • Ya Ding
Research Article

Abstract

Studies on the influence of one critical parameter (e.g., size), targeting a specific disease, while keeping other factors unchanged, are important for improving understanding and application of the molecular design of biomedical nanomaterials. In this study, we used doxorubicin (Dox)-conjugated gold nanoparticles (GNPs) to investigate the effects of the size of the gold core (10, 20, or 60 nm) on the performance of their conjugates. We found that all three conjugates differed slightly in their physicochemical properties, facilitating a direct and accurate assessment of the size effects of GNP-Dox conjugates on their in vitro and in vivo performance. The cytological properties (the cell penetration rate and efficiency, as well as the cytotoxicity) and antitumor performance (the intratumoral penetration, treatment efficacy, and biodistribution) were highly correlated to the size of the inorganic core. Among all test groups, although the conjugate with a 60-nm gold core had the highest drug loading and release efficiency, the conjugate with a 10-nm gold core displayed the best antitumor efficacy toward the liver cancer models. This was because it showed the deepest tumor permeability and the highest tumor cell-killing ability of Dox transported by the relatively small GNPs. This study provides important evidence for better understanding the effect of size on in vitro and in vivo properties of potential therapeutic nanosystems and their structure design.

Keywords

size effect doxorubicin-conjugated gold nanoparticles antitumor efficacy tumor penetration liver cancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 31470916, 31500769, 51672010, and 81421004), the Fundamental Research Funds for the Central Universities (Nos. 2015PT036 and 2016PT014), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Open Project Program of MOE Key Laboratory of Drug Quality Control and Pharmacovigilance (No. DQCP2015MS01).

Supplementary material

12274_2017_1963_MOESM1_ESM.pdf (2.7 mb)
Effects of gold core size on regulating the performance of doxorubicin-conjugated gold nanoparticles

References

  1. [1]
    Jack, C.; Karimullah, A. S.; Leyman, R.; Tullius, R.; Rotello, V. M.; Cooke, G.; Gadegaard, N.; Barron, L. D.; Kadodwala, M. Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures. Nano Lett. 2016, 16, 5806–5814.CrossRefGoogle Scholar
  2. [2]
    Yu, J.; Yang, C.; Li, J.; Ding, Y. C.; Zhang, L.; Yousaf, M. Z.; Lin, J.; Pang, R.; Wei, L. B.; Xu, L. L. et al. Multifunctional Fe5C2 nanoparticles: A targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv. Mater. 2014, 26, 4114–4120.CrossRefGoogle Scholar
  3. [3]
    Yang, Y. N.; Yu, C. Z. Advances in silica based nanoparticles for targeted cancer therapy. Nanomed.: Nanotechnol. Biol. Med. 2016, 12, 317–332.CrossRefGoogle Scholar
  4. [4]
    Wang, S.; Huang, P.; Chen, X. Y. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv. Mater. 2016, 28, 7340–7364.CrossRefGoogle Scholar
  5. [5]
    Ye, Y. Q.; Wang, J. Q.; Hu, Q. Y.; Hochu, G. M.; Xin, H. L.; Wang, C.; Gu, Z. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano 2016, 10, 8956–8963.CrossRefGoogle Scholar
  6. [6]
    Lu, F.; Wu, S. H.; Hung, Y.; Mou, C. Y. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 2009, 5, 1408–1413.CrossRefGoogle Scholar
  7. [7]
    Hoshyar, N.; Gray, S.; Han, H. B.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016, 11, 673–692.CrossRefGoogle Scholar
  8. [8]
    Goodman, C. M.; McCusker, C. D.; Yilmaz, T.; Rotello, V. M. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem. 2004, 15, 897–900.CrossRefGoogle Scholar
  9. [9]
    Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005, 1, 325–327.CrossRefGoogle Scholar
  10. [10]
    Pernodet, N.; Fang, X. H.; Sun, Y.; Bakhtina, A.; Ramakrishnan, A.; Sokolov, J.; Ulman, A.; Rafailovich, M. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2006, 2, 766–773.CrossRefGoogle Scholar
  11. [11]
    Forner, A.; Llovet, J. M.; Bruix, J. Hepatocellular carcinoma. Lancet 2012, 379, 1245–1255.CrossRefGoogle Scholar
  12. [12]
    Gauthier, A.; Ho, M. Role of sorafenib in the treatment of advanced hepatocellular carcinoma: An update. Hepatol. Res. 2013, 43, 147–154.CrossRefGoogle Scholar
  13. [13]
    Murata, S.; Mine, T.; Sugihara, F.; Yasui, D.; Yamaguchi, H.; Ueda, T.; Onozawa, S.; Kumita, S. I. Interventional treatment for unresectable hepatocellular carcinoma. World J. Gastroenterol. 2014, 20, 13453–13465.CrossRefGoogle Scholar
  14. [14]
    Rasool, M.; Rashid, S.; Arooj, M.; Ansari, S. A.; Khan, K. M.; Malik, A.; Naseer, M. I.; Zahid, S.; Manan, A.; Asif, M. et al. New possibilities in hepatocellular carcinoma treatment. Anticancer Res. 2014, 34, 1563–1571.Google Scholar
  15. [15]
    Ding, Y.; Zhou, Y. Y.; Chen, H.; Geng, D. D.; Wu, D. Y.; Hong, J.; Shen, W. B.; Hang, T. J.; Zhang, C. The performance of thiol-terminated PEG-paclitaxel-conjugated gold nanoparticles. Biomaterials 2013, 34, 10217–10227.CrossRefGoogle Scholar
  16. [16]
    Cui, T.; Liang, J. J.; Chen, H.; Geng, D. D.; Jiao, L.; Yang, J. Y.; Qian, H.; Zhang, C.; Ding, Y. Performance of doxorubicin-conjugated gold nanoparticles: Regulation of drug location. ACS Appl. Mater. Interfaces 2017, 9, 8569–8580.CrossRefGoogle Scholar
  17. [17]
    Chauhan, V. P.; Stylianopoulos, T.; Martin, J. D.; Popovic, Z.; Chen, O.; Kamoun, W. S.; Bawendi, M. G.; Fukumura, D.; Jain, R. K. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 2012, 7, 383–388.CrossRefGoogle Scholar
  18. [18]
    Chithrani, D. B. Intracellular uptake, transport, and processing of gold nanostructures. Mol. Membr. Biol. 2010, 27, 299–311.CrossRefGoogle Scholar
  19. [19]
    Yohan, D.; Cruje, C.; Lu, X. F.; Chithrani, D. B. Sizedependent gold nanoparticle interaction at nano-micro interface using both monolayer and multilayer (tissue-like) cell models. Nano-Micro Lett. 2016, 8, 44–53.CrossRefGoogle Scholar
  20. [20]
    Dubcek, P.; Pivac, B.; Miloševic, S.; Krstulovic, N.; Kregar, Z.; Bernstorff, S. Texture of GaAs nanoparticles deposited by pulsed laser ablation in different atmospheres. ISRN Nanomater. 2013, 2013, 576506.CrossRefGoogle Scholar
  21. [21]
    Chou, L. Y. T.; Song, F. Y.; Chan, W. C. W. Engineering the structure and properties of DNA-nanoparticle superstructures using polyvalent counterions. J. Am. Chem. Soc. 2016, 138, 4565–4572.CrossRefGoogle Scholar
  22. [22]
    Meena, S. K.; Celiksoy, S.; Schäfer, P.; Henkel, A.; Sönnichsen, C.; Sulpizi, M. The role of halide ions in the anisotropic growth of gold nanoparticles: A microscopic, atomistic perspective. Phys. Chem. Chem. Phys. 2016, 18, 13246–13254.CrossRefGoogle Scholar
  23. [23]
    Wang, G. J.; Yao, G. W.; Ma, S. Y.; Chen, B. L. Effects of different reductants on the synthesis of Au nanoparticles. Chem. World 2011, 52, 129–132.Google Scholar
  24. [24]
    Lévy, R.; Thanh, N. T. K.; Doty, R. C.; Hussain, I.; Nichols, R. J.; Schiffrin, D. J.; Brust, M.; Fernig, D. G. Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J. Am. Chem. Soc. 2004, 126, 10076–10084.CrossRefGoogle Scholar
  25. [25]
    Link, S.; El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212–4217.CrossRefGoogle Scholar
  26. [26]
    Nath, N.; Chilkoti, A. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: Optimization of nanoparticle size. Anal. Chem. 2004, 76, 5370–5378.CrossRefGoogle Scholar
  27. [27]
    Hill, H. D.; Millstone, J. E.; Banholzer, M. J.; Mirkin, C. A. The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 2009, 3, 418–424.CrossRefGoogle Scholar
  28. [28]
    Cederquist, K. B.; Keating, C. D. Curvature effects in DNA: Au nanoparticle conjugates. ACS Nano 2009, 3, 256–260.CrossRefGoogle Scholar
  29. [29]
    Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662–668.CrossRefGoogle Scholar
  30. [30]
    Taylor, U.; Rehbock, C.; Streich, C.; Rath, D.; Barcikowski, S. Rational design of gold nanoparticle toxicology assays: A question of exposure scenario, dose and experimental setup. Nanomedicine 2014, 9, 1971–1989.CrossRefGoogle Scholar
  31. [31]
    Liu, X.; Xiang, J. J.; Zhu, D. C.; Jiang, L. M.; Zhou, Z. X.; Tang, J. B.; Liu, X. R.; Huang, Y. Z.; Shen, Y. Q. Fusogenic reactive oxygen species triggered charge-reversal vector for effective gene delivery. Adv. Mater. 2016, 28, 1743–1752.CrossRefGoogle Scholar
  32. [32]
    Lim, Z. Z. J.; Li, J. E. J.; Ng, C. T.; Yung, L. Y. L.; Bay, B. H. Gold nanoparticles in cancer therapy. Acta Pharmacol. Sin. 2011, 32, 983–990.CrossRefGoogle Scholar
  33. [33]
    Zhang, X. D.; Wu, D.; Shen, X.; Chen, J.; Sun, Y. M.; Liu, P. X.; Liang, X. J. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials. 2012, 33, 6408–6419.CrossRefGoogle Scholar
  34. [34]
    Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 2008, 3, 145–150.CrossRefGoogle Scholar
  35. [35]
    Park, J.; Estrada, A.; Schwartz, J. A.; Diagaradjane, P.; Krishnan, S.; Dunn, A. K.; Tunnell, J. W. Intra-organ biodistribution of gold nanoparticles using intrinsic twophoton- induced photoluminescence. Laser. Surg. Med. 2010, 42, 630–639.CrossRefGoogle Scholar
  36. [36]
    Saha, K.; Kim, S. T.; Yan, B.; Miranda, O. R.; Alfonso, F. S.; Shlosman, D.; Rotello, V. M. Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells. Small 2013, 9, 300–305.CrossRefGoogle Scholar
  37. [37]
    Chen, S.; Cheng, A. C.; Wang, M. S.; Peng, X. Detection of apoptosis induced by new type gosling viral enteritis virus in vitro through fluorescein annexin V-FITC/PI double labeling. World J. Gastroenterol. 2008, 14, 2174–2178.CrossRefGoogle Scholar
  38. [38]
    Ye, Y. Y.; Liu, J. W.; Xu, J. H.; Sun, L. J.; Chen, M. C.; Lan, M. B. Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line. Toxicol. in Vitro 2010, 24, 751–758.CrossRefGoogle Scholar
  39. [39]
    Qiu, N. S.; Liu, X. R.; Zhong, Y.; Zhou, Z. X.; Piao, Y.; Miao, L.; Zhang, Q. Z.; Tang, J. B.; Huang, L.; Shen, Y. Q. Esterase-activated charge-reversal polymer for fibroblastexempt cancer gene therapy. Adv. Mater. 2016, 28, 10613–10622.CrossRefGoogle Scholar
  40. [40]
    Carvalho, F. S.; Burgeiro, A.; Garcia, R.; Moreno, A. J.; Carvalho, R. A.; Oliveira, P. J. Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. Med. Res. Rev. 2014, 34, 106–135.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Natural Medicines, Department of Pharmaceutical AnalysisChina Pharmaceutical UniversityNanjingChina
  2. 2.Department of Biochemistry, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
  3. 3.Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKLMMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina
  4. 4.Key Laboratory of Biomedical Functional Materials, School of SciencesChina Pharmaceutical UniversityNanjingChina

Personalised recommendations