Nano Research

, Volume 11, Issue 7, pp 3802–3813 | Cite as

Metallized siligraphene nanosheets (SiC7) as high capacity hydrogen storage materials

  • Syeda R. Naqvi
  • Tanveer Hussain
  • Wei Luo
  • Rajeev Ahuja
Research Article


A planar honeycomb monolayer of siligraphene (SiC7) could be a prospective medium for clean energy storage due to its light weight, and its remarkable mechanical and unique electronic properties. By employing van der Waals-induced first principles calculations based on density functional theory (DFT), we have explored the structural, electronic, and hydrogen (H2) storage characteristics of SiC7 sheets decorated with various light metals. The binding energies of lithium (Li), sodium (Na), potassium (K), magnesium (Mg), calcium (Ca),scandium (Sc), and titanium (Ti) dopants on a SiC7 monolayer were studied at various doping concentrations, and found to be strong enough to counteract the metal clustering effect. We further verified the stabilities of the metallized SiC7 sheets at room temperature using ab initio molecular dynamics (MD) simulations. Bader charge analysis revealed that upon adsorption, due to the difference in electronegativity, all the metal adatoms donated a fraction of their electronic charges to the SiC7 sheet. Each partially charged metal center on the SiC7sheets could bind a maximum of 4 to 5 H2 molecules. A high H2 gravimetric density was achieved for several dopants at a doping concentration of 12.50%. The H2binding energies were found to fall within the ideal range of 0.2–0.6 eV. Based on these findings, we propose that metal-doped SiC7 sheets can operate as efficient H2 storage media under ambient conditions.


clean energy functionalization binding characteristics dopants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are indebted to the Swedish Research Council (VR), StandUp, Swedish Energy Agency, and Swedish Institute for financial support. The SNIC and UPP-MAX are also acknowledged for providing computing time. T. Hussain is thankful to UQ for providing the financial support under UQ postdoctoral fellowship scheme and the resources at NCI National Facility systems at the Australian National University through National Computational Merit Allocation Scheme supported by the Australian Government and the University of Queensland Research Computing Centre.


  1. [1]
    Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358.CrossRefGoogle Scholar
  2. [2]
    Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. The hydrogen economy. Phys. Today 2004, 57, 39–44.CrossRefGoogle Scholar
  3. [3]
    Mazloomi, K.; Gomes, C. Hydrogen as an energy carrier: Prospects and challenges. Renewable Sustainable Energy Rev. 2012, 16, 3024–3033.CrossRefGoogle Scholar
  4. [4]
    Van den Berg A. W.; Areán, C. O. Materials for hydrogen storage: Current research trends and perspectives. Chem. Commun. 2008, 668–681.Google Scholar
  5. [5]
    Kim, Y. H.; Zhao, Y. F.; Williamson, A.; Heben, M. J.; Zhang, S. B. Nondissociative adsorption of H2 molecules in light-element-doped fullerenes. Phys. Rev. Lett. 2006, 96, 016102.CrossRefGoogle Scholar
  6. [6]
    US Department of Energy Office of Energy Efficiency and Renewable Energy and The FreedomCAR and Fuel Partnership. Targets for onboard hydrogen storage systems for light-duty vehicles [Online]. (accessed March 2017).Google Scholar
  7. [7]
    Mpourmpakis, G.; Tylianakis, E.; Froudakis, G. E. Carbon nanoscrolls: A promising material for hydrogen storage. Nano Lett. 2007, 7, 1893–1897.CrossRefGoogle Scholar
  8. [8]
    Züttel, A.; Sudan, P.; Mauron, P.; Kiyobayashi, T.; Emmenegger, C.; Schlapbach, L. Hydrogen storage in carbon nanostructures. Int. J. Hydrogen Energy 2002, 27, 203–212.CrossRefGoogle Scholar
  9. [9]
    Panella, B.; Hirscher, M.; Roth, S. Hydrogen adsorption in different carbon nanostructures. Carbon 2005, 43, 2209–2214.CrossRefGoogle Scholar
  10. [10]
    Dimitrakakis, G. K.; Tylianakis, E.; Froudakis, G. E. Pillared graphene: A new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 2008, 8, 3166–3170.CrossRefGoogle Scholar
  11. [11]
    Bogdanović, B.; Schwickardi, M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloys Compd. 1997, 253–254, 1–9.CrossRefGoogle Scholar
  12. [12]
    Zaluska, A.; Zaluski, L.; Ström-Olsen, J. O. Structure, catalysis and atomic reactions on the nano-scale: A systematic approach to metal hydrides for hydrogen storage. Appl. Phys. A: Mater. Sci. Proc. 2001, 72, 157–165.CrossRefGoogle Scholar
  13. [13]
    Wiswall, R. H., Jr.; Reilly, J. J. Hydrogen storage in metal hydrides. Science 1974, 186, 1158.CrossRefGoogle Scholar
  14. [14]
    Lee, H.; Ihm, J.; Cohen, M. L.; Louie, S. G. Calcium-decorated carbon nanotubes for high-capacity hydrogen storage: First- principles calculations. Phys. Rev. B 2009, 80, 115412.CrossRefGoogle Scholar
  15. [15]
    Wang, L.; Lee, K.; Sun, Y. Y.; Lucking, M.; Chen Z. F.; Zhao, J. J. B. Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 2009, 3, 2995–3000.CrossRefGoogle Scholar
  16. [16]
    Li, M.; Li, Y. F.; Zhou, Z.; Shen, P. W.; Chen, Z. F. Ca-coated boron fullerenes and nanotubes as superior hydrogen storage materials. Nano Lett. 2009, 9, 1944–1948.CrossRefGoogle Scholar
  17. [17]
    Chandrakumar, K. R. S.; Ghosh, S. K. Alkali-metal-induced enhancement of hydrogen adsorption in C60 fullerenes: An ab initio study. Nano Lett. 2008, 8, 13–19.CrossRefGoogle Scholar
  18. [18]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  19. [19]
    Ataca, C.; Aktürk, E.; Ciraci, S.; Ustunel, H. High-capacity hydrogen storage by metallized graphene. Appl. Phys. Lett. 2008, 93, 043123.CrossRefGoogle Scholar
  20. [20]
    Arellano, J. S.; Molina, L. M.; Rubio, A.; Alonso, J. A. Density functional study of adsorption of molecular hydrogen on graphene layers. J. Chem. Phys. 2000, 112, 8114–8119.CrossRefGoogle Scholar
  21. [21]
    Hussain, T.; Pathak, B.; Ramzan, M.; Maark, T. A.; Ahuja, R. Calcium doped graphane as a hydrogen storage material. Appl. Phys. Lett. 2012, 100, 183902.CrossRefGoogle Scholar
  22. [22]
    Venkataramanan, N. S.; Khazaei, M.; Sahara, R.; Mizuseki, H.; Kawazoe, Y. First-principles study of hydrogen storage over Ni and Rh doped BN sheets. Chem. Phys. 2009, 359, 173–178.CrossRefGoogle Scholar
  23. [23]
    Naqvi, S. R.; Rao, G. S.; Luo, W.; Ahuja, R.; Hussain, T. Hexagonal boron nitride (h-BN) sheets with OLi, ONa, and Li2F molecules for enhanced energy storage. ChemPhysChem 2017, 18, 513–518.CrossRefGoogle Scholar
  24. [24]
    Yang, Z. L.; Ni, J. Li-doped BC3 sheet for high-capacity hydrogen storage. Appl. Phys. Lett. 2012, 100, 183109.CrossRefGoogle Scholar
  25. [25]
    Naqvi, S. R.; Hussain, T.; Panigrahi, P.; Luo, W.; Ahuja, R. Manipulating energy storage characteristics of ultrathin boron carbide monolayer under varied scandium doping. RSC Adv. 2017, 7, 8598–8605.CrossRefGoogle Scholar
  26. [26]
    Wang, J.; Li, J. B.; Li, S. S.; Liu, Y. Hydrogen storage by metalized silicene and silicane. J. Appl. Phys. 2013, 114, 124309.CrossRefGoogle Scholar
  27. [27]
    Hussain, T.; Chakraborty, S.; Ahuja, R. Metal-functionalized silicene for efficient hydrogen storage. ChemPhysChem 2013, 14, 3463–3466.CrossRefGoogle Scholar
  28. [28]
    Li, Q. F.; Wan, X. G.; Duan, C. G.; Kuo, J. L. Theoretical prediction of hydrogen storage on Li-decorated monolayer black phosphorus. J. Phys. D: Appl. Phys. 2014, 47, 465302.CrossRefGoogle Scholar
  29. [29]
    Dillon, A. C.; Jones, K. M.; Bekkedahi, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Storage of hydrogen in single-walled carbon nanotubes. Nature 1997, 386, 377–379.CrossRefGoogle Scholar
  30. [30]
    Hashmi, A.; Farooq, M. U.; Khan, I.; Son, J.; Hong, J. S. Ultra-high capacity hydrogen storage in a Li decorated two-dimensional C2N layer. J. Mater. Chem. A 2017, 5, 2821–2828.CrossRefGoogle Scholar
  31. [31]
    Ritschel, M.; Uhlemann, M.; Gutfleisch, O.; Leonhardt, A.; Graff, A.; Täschner, Ch.; Fink, J. Hydrogen storage in different carbon nanostructures. Appl. Phys. Lett. 2002, 80, 2985–2987.CrossRefGoogle Scholar
  32. [32]
    Ataca, C.; Aktürk, E.; Ciraci, S.; Ustunel, H. High-capacity hydrogen storage by metallized graphene. Appl. Phys. Lett. 2008, 93, 043123.CrossRefGoogle Scholar
  33. [33]
    Sun, Q.; Jena, P.; Wang, Q.; Marquez, M. First-principles study of hydrogen storage on Li12C60. J. Am. Chem. Soc. 2006, 128, 9741–9745.CrossRefGoogle Scholar
  34. [34]
    Faye, O.; Edouk, U.; Szpunar, J.; Szpunar, B.; Samoura, A.; Beye, A. Hydrogen storage on bare Cu atom and Cu-functionalized boron-doped graphene: A first principles study. Int. J. Hydrogen Energy 2017, 42, 4233–4243.CrossRefGoogle Scholar
  35. [35]
    Faye, O.; Szpunar, J. A.; Szpunar, B.; Beye, A. C. Hydrogen adsorption and storage on palladium-fuctionalized graphene with NH-dopant: A first principles calculation. Appl. Surf. Sci. 2017, 392, 362–374.CrossRefGoogle Scholar
  36. [36]
    Zhou, Y. N.; Chu, W.; Jing, F. L.; Zheng, J.; Sun, W. J.; Xue, Y. Enhanced hydrogen storage on Li-doped defective graphene with B substitution: A DFT study. Appl. Surf. Sci. 2017, 410, 166–176.CrossRefGoogle Scholar
  37. [37]
    Haldar, S.; Mukherjee, S.; Ahmed, F.; Singh, C. V. A first principles study of hydrogen storage in lithium decorated defective phosphorene. Int. J. Hydrogen Energy 2017, 42, 23018–23027.CrossRefGoogle Scholar
  38. [38]
    Hussain, T.; Hankel, M.; Searles, D. J. Computational evaluation of lithium-functionalized carbon nitride (g-C6N8) monolayer as an efficient hydrogen storage material. J. Phys. Chem. C 2016, 120, 25180–25188.CrossRefGoogle Scholar
  39. [39]
    Mpourmpakis, G.; Froudakis, G. E.; Lithoxoos, G. P.; Samios, J. SiC nanotubes: A novel material for hydrogen storage. Nano Lett. 2006, 6, 1581–1583.CrossRefGoogle Scholar
  40. [40]
    Shi, Z. M.; Zhang, Z. H.; Kutana, A.; Yakobson, B. I. Predicting two-dimensional silicon carbide monolayers. ACS Nano 2015, 9, 9802–9809.CrossRefGoogle Scholar
  41. [41]
    Lin, S. S. Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 2012, 116, 3951–3955.CrossRefGoogle Scholar
  42. [42]
    Lin, S. S.; Zhang, S. J.; Li, X. Q.; Xu, W. L.; Pi, X. D.; Liu, X. Y.; Wang, F. C.; Wu, H. G.; Chen, H. S. Quasi-two-dimensional SiC and SiC2: Interaction of silicon and carbon at atomic thin lattice plane. J. Phys. Chem. C 2015, 119, 19772–19779.CrossRefGoogle Scholar
  43. [43]
    Taguchi, T.; Igawa, N.; Yamamoto, H.; Jitsukawa, S. Synthesis of silicon carbide nanotubes. J. Am. Ceram. Soc. 2005, 88, 459–461.CrossRefGoogle Scholar
  44. [44]
    Pei, L. Z.; Tang, Y. H.; Chen, Y. W.; Guo, C.; Li, X. X.; Yuan, Y.; Zhang, Y. Preparation of silicon carbide nanotubes by hydrothermal method. J. Appl. Phys. 2006, 99, 114306.CrossRefGoogle Scholar
  45. [45]
    Dong, H. L.; Zhou, L. J.; Frauenheim, T.; Hou, T. J.; Lee, S. T.; Li, Y. Y. SiC7 siligraphene: A novel donor material with extraordinary sunlight absorption. Nanoscale 2016, 8, 6994–6999.CrossRefGoogle Scholar
  46. [46]
    Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.CrossRefGoogle Scholar
  47. [47]
    Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.CrossRefGoogle Scholar
  48. [48]
    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.CrossRefGoogle Scholar
  49. [49]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  50. [50]
    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.CrossRefGoogle Scholar
  51. [51]
    Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  52. [52]
    Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, 1990.Google Scholar
  53. [53]
    Kubas, G. J. Metal-dihydrogen and σ-bond coordination: The consummate extension of the Dewar-Chatt-Duncanson model for metal-olefin π bonding. J. Organomet. Chem. 2001, 635, 37–68.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Syeda R. Naqvi
    • 1
  • Tanveer Hussain
    • 3
  • Wei Luo
    • 1
  • Rajeev Ahuja
    • 1
    • 2
  1. 1.Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516Uppsala UniversityUppsalaSweden
  2. 2.Applied Materials Physics, Department of Materials and EngineeringRoyal Institute of Technology (KTH)StockholmSweden
  3. 3.Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneAustralia

Personalised recommendations