Advertisement

Nano Research

, Volume 11, Issue 7, pp 3780–3790 | Cite as

Single-step flash-heat synthesis of red phosphorus/graphene flame-retardant composite as flexible anodes for sodium-ion batteries

  • Yihang Liu
  • Anyi Zhang
  • Chenfei Shen
  • Qingzhou Liu
  • Jiansong Cai
  • Xuan Cao
  • Chongwu ZhouEmail author
Research Article

Abstract

Red phosphorus (RP) has attracted considerable attention as the anode for high-performance Na-ion batteries, owing to its low cost and high theoretical specific capacity of ∼ 2,600 mAh/g. In this study, a facile single-step flash-heat treatment was developed to achieve the reduction of graphene oxide (GO) and the simultaneous deposition of RP onto the reduced graphene oxide (rGO) sheets. The resulting RP/rGO composite was shown to be a promising candidate for overcoming the issues associated with the poor electronic conductivity and large volume variation of RP during cycling. The RP/rGO flexible film anode delivered an average capacity of 1,625 mAh/g during 200 cycles at a charge/discharge current density of 1 A/g. Average charge capacities of 1,786, 1,597, 1,324, and 679 mAh/g at 1, 2, 4, and 6 A/g current densities were obtained in the rate capability tests. Moreover, owing to the RP component, the RP/rGO film presented superior flame retardancy compared to an rGO film. This work thus introduces a highly accessible synthesis method to prepare flexible and safe RP anodes with superior electrochemical performance toward Na-ion storage.

Keywords

sodium-ion batteries red phosphorus facile synthesis flexible flame-retardant reduced graphene oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to acknowledge the collaboration of this research with King Abdul-Aziz City for Science and Technology (KACST) via The Center of Excellence for Nanotechnologies (CEGN). A portion of the images and data used in this article were acquired at The Center for Electron Microscopy and Microanalysis, University of Southern California.

Supplementary material

Supplementary material, approximately 26.3 MB.

Supplementary material, approximately 9.36 MB.

12274_2017_1952_MOESM3_ESM.pdf (2.7 mb)
Single-step flash-heat synthesis of red phosphorus/graphene flame-retardant composite as flexible anodes for sodium-ion batteries

References

  1. [1]
    Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.CrossRefGoogle Scholar
  2. [2]
    Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Research on advanced materials for Li-ion batteries. Adv. Mater. 2009, 21, 4593–4607.CrossRefGoogle Scholar
  3. [3]
    Luo, W.; Shen, F.; Bommier, C.; Zhu, H. L.; Ji, X. L.; Hu, L. B. Na-ion battery anodes: Materials and electrochemistry. Acc. Chem. Res. 2016, 49, 231–240.CrossRefGoogle Scholar
  4. [4]
    Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.CrossRefGoogle Scholar
  5. [5]
    Liu, Y. H.; Fang, X.; Ge, M. Y.; Rong, J. P.; Shen, C. F.; Zhang, A. Y.; Enaya, H. A.; Zhou, C. W. SnO2 coated carbon cloth with surface modification as Na-ion battery anode. Nano Energy 2015, 16, 399–407.CrossRefGoogle Scholar
  6. [6]
    Liu, Y. H.; Fang, X.; Zhang, A. Y.; Shen, C. F.; Liu, Q. Z.; Enaya, H. A.; Zhou, C. W. Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification. Nano Energy 2016, 27, 27–34.CrossRefGoogle Scholar
  7. [7]
    Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.CrossRefGoogle Scholar
  8. [8]
    Peng, Q.; Hu, K. M.; Sa, B. S.; Zhou, J.; Wu, B.; Hou, X. H.; Sun, Z. M. Unexpected elastic isotropy in a black phosphorene/TiC2 van der Waals heterostructure with flexible Li-ion battery anode applications. Nano Res. 2017, 10, 3136–3150.CrossRefGoogle Scholar
  9. [9]
    Xu, G. L.; Chen, Z. H.; Zhong, G. M.; Liu, Y. Z.; Yang, Y.; Ma, T. Y.; Ren, Y.; Zhou, X. B.; Wu, X. H.; Zhang, X. Y. et al. Nanostructured black phosphorus/ketjenblackmultiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 2016, 16, 3955–3965.CrossRefGoogle Scholar
  10. [10]
    Chen, L.; Zhou, G. M.; Liu, Z. B.; Ma, X. M.; Chen, J.; Zhang, Z. Y.; Ma, X. L.; Li, F.; Cheng, H. M.; Ren, W. C. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 2016, 28, 510–517.CrossRefGoogle Scholar
  11. [11]
    Levchik, S. V.; Weil, E. D. A review of recent progress in phosphorus-based flame retardants. J. Fire Sci. 2006, 24, 345–364.CrossRefGoogle Scholar
  12. [12]
    Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 2013, 13, 5480–5484.CrossRefGoogle Scholar
  13. [13]
    Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045–3049.CrossRefGoogle Scholar
  14. [14]
    Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem. 2013, 125, 4731–4734.CrossRefGoogle Scholar
  15. [15]
    Song, J. X.; Yu, Z. X.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D. H.; Walter, T.; Regula, M.; Choi, D.; Li, X. L. et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014, 14, 6329–6335.CrossRefGoogle Scholar
  16. [16]
    Zhang, C.; Wang, X.; Liang, Q. F.; Liu, X. Z.; Weng, Q. H.; Liu, J. W.; Yang, Y. J.; Dai, Z. H.; Ding, K. J.; Bando, Y. et al. Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 2016, 16, 2054–2060.CrossRefGoogle Scholar
  17. [17]
    Liu, Y. H.; Zhang, A. Y.; Shen, C. F.; Liu, Q. Z.; Cao, X.; Ma, Y. Q.; Chen, L.; Lau, C.; Chen, T. C.; Wei, F. W. et al. Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano 2017, 11, 5530–5537.CrossRefGoogle Scholar
  18. [18]
    Li, W. H.; Yang, Z. Z.; Li, M. S.; Jiang, Y.; Wei, X.; Zhong, X. W.; Gu, L.; Yu, Y. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 2016, 16, 1546–1553.CrossRefGoogle Scholar
  19. [19]
    Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820.CrossRefGoogle Scholar
  20. [20]
    Chen, Y. N.; Egan, G. C.; Wan, J. Y.; Zhu, S. Z.; Jacob, R. J.; Zhou, W. B.; Dai, J. Q.; Wang, Y. B.; Danner, V. A.; Yao, Y. G. et al. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nat. Commun. 2016, 7, 12332.CrossRefGoogle Scholar
  21. [21]
    Yao, Y. G.; Chen, F. J.; Nie, A. M.; Lacey, S. D.; Jacob, R. J.; Xu, S. M.; Huang, Z. N.; Fu, K.; Dai, J. Q.; Salamanca-Riba, L. et al. In situ high temperature synthesis of single-component metallic nanoparticles. ACS Cent. Sci. 2017, 3, 294–301.CrossRefGoogle Scholar
  22. [22]
    Dave, K.; Park, K. H.; Dhayal, M. Two-step process for programmable removal of oxygen functionalities of graphene oxide: Functional, structural and electrical characteristics. RSC Adv. 2015, 5, 95657–95665.CrossRefGoogle Scholar
  23. [23]
    Penmatsa, V.; Kim, T.; Beidaghi, M.; Kawarada, H.; Gu, L.; Wang, Z. F.; Wang, C. L. Three-dimensional graphene nanosheet encrusted carbon micropillar arrays for electrochemical sensing. Nanoscale 2012, 4, 3673–3678.CrossRefGoogle Scholar
  24. [24]
    Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.CrossRefGoogle Scholar
  25. [25]
    Sun, J.; Zheng, G. Y.; Lee, H.-W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 2014, 14, 4573–4580.CrossRefGoogle Scholar
  26. [26]
    Forney, M. W.; Ganter, M. J.; Staub, J. W.; Ridgley, R. D.; Landi, B. J. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). Nano Lett. 2013, 13, 4158–4163.CrossRefGoogle Scholar
  27. [27]
    Zhao, J.; Lu, Z. D.; Wang, H. T.; Liu, W.; Lee, H. W.; Yan, K.; Zhou, D.; Lin, D. C.; Liu, N.; Cui, Y. Artificial solid electrolyte interphase-protected LixSi nanoparticles: An efficient and stable prelithiation reagent for lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 8372–8375.CrossRefGoogle Scholar
  28. [28]
    Yang, Y. J.; Tang, D.-M.; Zhang, C.; Zhang, Y. H.; Liang, Q. F.; Chen, S. M.; Weng, Q. H.; Zhou, M.; Xue, Y. M.; Liu, J. W. et al. “Protrusions” or “holes” in graphene: Which is the better choice for sodium ion storage? Energy Environ. Sci. 2017, 10, 979–986.Google Scholar
  29. [29]
    Ma, G. Y.; Xiang, Z. H.; Huang, K. S.; Ju, Z. C.; Zhuang, Q. C.; Cui, Y. H. Graphene-based phosphorus-doped carbon as anode material for high-performance sodium-ion batteries. Part. Part. Syst. Charact. 2017, 34, 1600315.CrossRefGoogle Scholar
  30. [30]
    Lu, L. G.; Han, X. B.; Li, J. Q.; Hua, J. F.; Ouyang, M. G. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288.CrossRefGoogle Scholar
  31. [31]
    Zong, L. Q.; Zhu, B.; Lu, Z. D.; Tan, Y. L.; Jin, Y.; Liu, N.; Hu, Y.; Gu, S.; Zhu, J.; Cui, Y. Nanopurification of silicon from 84% to 99.999% purity with a simple and scalable process. Proc. Natl. Acad. Sci. USA 2015, 112, 13473–13477.CrossRefGoogle Scholar
  32. [32]
    Zhu, B.; Jin, Y.; Tan, Y. L.; Zong, L. Q.; Hu, Y.; Chen, L.; Chen, Y. B.; Zhang, Q.; Zhu, J. Scalable production of Si nanoparticles directly from low grade sources for lithiumion battery anode. Nano Lett. 2015, 15, 5750–5754.CrossRefGoogle Scholar
  33. [33]
    Luo, W.; Wang, Y. X.; Wang, L. J.; Jiang, W.; Chou, S.-L.; Dou, S. X.; Liu, H. K.; Yang, J. P. Silicon/mesoporous carbon/crystalline TiO2 nanoparticles for highly stable lithium storage. ACS Nano 2016, 10, 10524–10532.CrossRefGoogle Scholar
  34. [34]
    Balakrishnan, P. G.; Ramesh, R.; Kumar, T. P. Safety mechanisms in lithium-ion batteries. J. Power Sources 2006, 155, 401–414.CrossRefGoogle Scholar
  35. [35]
    Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.CrossRefGoogle Scholar
  36. [36]
    Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.CrossRefGoogle Scholar
  37. [37]
    Zhang, S. S. A review on electrolyte additives for lithium-ion batteries. J. Power Sources 2006, 162, 1379–1394.CrossRefGoogle Scholar
  38. [38]
    Nakagawa, H.; Fujino, Y.; Kozono, S.; Katayama, Y.; Nukuda, T.; Sakaebe, H.; Matsumoto, H.; Tatsumi, K. Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells. J. Power Sources 2007, 174, 1021–1026.CrossRefGoogle Scholar
  39. [39]
    Xu, K.; Ding, M. S.; Zhang, S. S.; Allen, J. L.; Jow, T. R. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes. J. Electrochem. Soc. 2002, 149, A622–A626.CrossRefGoogle Scholar
  40. [40]
    Hyung, Y. E.; Vissers, D. R.; Amine, K. Flame-retardant additives for lithium-ion batteries. J. Power Sources 2003, 119–121, 383–387.CrossRefGoogle Scholar
  41. [41]
    Xiang, H. F.; Xu, H. Y.; Wang, Z. Z.; Chen, C. H. Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes. J. Power Sources 2007, 173, 562–564.CrossRefGoogle Scholar
  42. [42]
    Shim, E. G.; Nam, T. H.; Kim, J. G.; Kim, H. S.; Moon, S. I. Diphenyloctyl phosphate as a flame-retardant additive in electrolyte for Li-ion batteries. J. Power Sources 2008, 175, 533–539.CrossRefGoogle Scholar
  43. [43]
    Zhu, X. M.; Jiang, X. Y.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Bis(2,2,2-trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery. Electrochim. Acta 2015, 165, 67–71.CrossRefGoogle Scholar
  44. [44]
    Liu, K.; Liu, W.; Qiu, Y. C.; Kong, B.; Sun, Y. M.; Chen, Z.; Zhuo, D.; Lin, D. C.; Cui, Y. Electrospun core–shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci. Adv. 2017, 3, e1601978.CrossRefGoogle Scholar
  45. [45]
    Kim, J. H.; Kim, J. H.; Kim, J. M.; Lee, Y. G.; Lee, S. Y. Superlattice crystals-mimic, flexible/functional ceramic membranes: Beyond polymeric battery separators. Adv. Energy Mater. 2015, 5, 1500954.CrossRefGoogle Scholar
  46. [46]
    Kang, S. M.; Ryou, M. H.; Choi, J. W.; Lee, H. Mussel-and diatom-inspired silica coating on separators yields improved power and safety in Li-ion batteries. Chem. Mater. 2012, 24, 3481–3485.CrossRefGoogle Scholar
  47. [47]
    Van der Veen, I.; de Boer, J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012, 88, 1119–1153.CrossRefGoogle Scholar
  48. [48]
    Green, J. A review of phosphorus-containing flame retardants. J. Fire Flammabl. 1992, 10, 470–487.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Yihang Liu
    • 1
  • Anyi Zhang
    • 2
  • Chenfei Shen
    • 2
  • Qingzhou Liu
    • 2
  • Jiansong Cai
    • 2
  • Xuan Cao
    • 2
  • Chongwu Zhou
    • 1
    Email author
  1. 1.Ming Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Mork Family Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations