Advertisement

Nano Research

, Volume 11, Issue 6, pp 3385–3395 | Cite as

Calcium carbonate-doxorubicin@silica-indocyanine green nanospheres with photo-triggered drug delivery enhance cell killing in drug-resistant breast cancer cells

  • Wei Wang
  • Yang Zhao
  • Bei-Bei Yan
  • Liang Dong
  • Yang Lu
  • Shu-Hong Yu
Research Article
  • 184 Downloads

Abstract

Calcium carbonate-doxorubicin@silica-indocyanine green nanospheres with high uniformity and monodispersity were designed and synthesized, in order to provide a photo-triggered strategy for drug-resistant cancer therapy. Under near-infrared laser irradiation, the nanospheres transformed laser power into local heat and reactive oxygen species via the connected indocyanine green molecule, thus exhibiting photothermal and photodynamic effects. Moreover, the photo-triggered drug release based on calcium-assisted silica degradation was observed, endowing the nanospheres with chemotherapeutic properties. Finally, combined therapeutic effects against drug-resistant human breast cancer cells were successfully obtained. These photo-triggered materials based on calcium carbonate could provide a promising platform for enhanced multimodal cancer therapies.

Keywords

calcium carbonate-based structures photothermal therapy photodynamic therapy combined therapeutic effects 

Notes

Acknowledgements

We acknowledge the funding support from the National Natural Science Foundation of China (Nos. 21431006, 21761132008, and 21501163), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 21521001), Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-SLH036), the National Basic Research Program of China (No. 2014CB931800), the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS (No. 2015HSC-UE007), and Anhui Provincial Natural Science Foundation (No. 1608085QB25).

Supplementary material

12274_2017_1950_MOESM1_ESM.pdf (2.2 mb)
Calcium carbonate-doxorubicin@silica-indocyanine green nanospheres with photo-triggered drug delivery enhance cell killing in drug-resistant breast cancer cells

References

  1. [1]
    Heaney, R. P.; Rafferty, K. Carbonated beverages and urinary calcium excretion. Am. J. Clin. Nutr. 2001, 74, 343–347.CrossRefGoogle Scholar
  2. [2]
    Smith, J. M. Adverse reactions to food and drug additives. Eur. J. Clin. Nutr. 1991, 45 Suppl 1, 17–21.Google Scholar
  3. [3]
    Espínola, F.; Moya, M.; Fernández, D. G.; Castro, E. Improved extraction of virgin olive oil using calcium carbonate as coadjuvant extractant. J. Food Eng. 2009, 92, 112–118.CrossRefGoogle Scholar
  4. [4]
    Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 2002, 54, 631–651.CrossRefGoogle Scholar
  5. [5]
    Du, X. W.; Zhou, J.; Wu, L. H.; Sun, S. H.; Xu, B. Enzymatic transformation of phosphate decorated magnetic nanoparticles for selectively sorting and inhibiting cancer cells. Bioconjugate Chem. 2014, 25, 2129–2133.CrossRefGoogle Scholar
  6. [6]
    Du, X. W.; Zhou, J.; Wang, J. Q.; Zhou, R.; Xu, B. Chirality controls reaction-diffusion of nanoparticles for inhibiting cancer cells. Chemnanomat 2017, 3, 17–21.CrossRefGoogle Scholar
  7. [7]
    Zhao, Y.; Lu, Y.; Hu, Y.; Li, J. P.; Dong, L.; Lin, L. N.; Yu, S. H. Synthesis of superparamagnetic CaCO3 mesocrystals for multistage delivery in cancer therapy. Small 2010, 6, 2436–42.CrossRefGoogle Scholar
  8. [8]
    Boyjoo, Y.; Pareek, V. K.; Liu, J. Synthesis of micro and nano-sized calcium carbonate particles and their applications. J. Mater. Chem. A 2014, 2, 14270–14288.CrossRefGoogle Scholar
  9. [9]
    Kong, F.; Zhang, H. B.; Zhang, X.; Liu, D. F.; Chen, D.; Zhang, W. X.; Zhang, L. Y.; Santos, H. A.; Hai, M. T. Biodegradable photothermal and pH responsive calcium carbonate@phospholipid@acetalated dextran hybrid platform for advancing biomedical applications. Adv. Funct. Mater. 2016, 26, 6158–6169.CrossRefGoogle Scholar
  10. [10]
    Wei, W.; Ma, G. H.; Hu, G.; Yu, D.; Mcleish, T.; Su, Z. G.; Shen, Z. Y. Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. J. Am. Chem. Soc. 2008, 130, 15808–15810.CrossRefGoogle Scholar
  11. [11]
    Wang, J.; Chen, J. S.; Zong, J. Y.; Zhao, D.; Li, F.; Zhuo, R. X.; Cheng, S. X. Calcium carbonate/carboxymethyl chitosan hybrid microspheres and nanospheres for drug delivery. J. Phys. Chem. C 2010, 114, 18940–18945.CrossRefGoogle Scholar
  12. [12]
    Richardson, J. J.; Maina, J. W.; Ejima, H.; Hu, M.; Guo, J. L.; Choy, M. Y.; Gunawan, S. T.; Lybaert, L.; Hagemeyer, C. E.; De Geest, B. G. et al. Versatile loading of diverse cargo into functional polymer capsules. Adv. Sci. 2015, 2, 1400007.CrossRefGoogle Scholar
  13. [13]
    Richardson, J. J.; Choy, M. Y.; Guo, J. L.; Liang, K.; Alt, K.; Ping, Y.; Cui, J. W.; Law, L. S.; Hagemeyer, C. E.; Caruso, F. Polymer capsules for plaque-targeted in vivo delivery. Adv. Mater. 2016, 28, 7820.CrossRefGoogle Scholar
  14. [14]
    Ju, Y.; Cui, J. W.; Sun, H. L.; Müllner, M.; Dai, Y. L.; Guo, J. L.; Bertleff-Zieschang, N.; Suma, T.; Richardson, J. J.; Caruso, F. Engineered metal-phenolic capsules show tunable targeted delivery to cancer cells. Biomacromolecules 2016, 17, 2268–2276.CrossRefGoogle Scholar
  15. [15]
    Richardson, J. J.; Cui, J. W.; Björnmalm, M.; Braunger, J. A.; Ejima, H.; Caruso, F. Innovation in layer-by-layer assembly. Chem. Rev. 2016, 116, 14828–14867.CrossRefGoogle Scholar
  16. [16]
    Som, A.; Raliya, R.; Tian, L. M.; Akers, W.; Ippolito, J. E.; Singamaneni, S.; Biswas, P.; Achilefu, S. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo. Nanoscale 2016, 8, 12639–12647.CrossRefGoogle Scholar
  17. [17]
    Chen, J. F.; Ding, H. M.; Wang, J. X.; Shao, L. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials 2004, 25, 723–727.CrossRefGoogle Scholar
  18. [18]
    Volodkin, D. V.; von Klitzing, R.; Möhwald, H. Pure protein microspheres by calcium carbonate templating. Angew. Chem., Int. Ed. 2010, 49, 9258–9261.CrossRefGoogle Scholar
  19. [19]
    Zhao, Y.; Lin, L. N.; Lu, Y.; Chen, S. F.; Dong, L.; Yu, S. H. Templating synthesis of preloaded doxorubicin in hollow mesoporous silica nanospheres for biomedical applications. Adv. Mater. 2010, 22, 5255–5259.CrossRefGoogle Scholar
  20. [20]
    Zhao, Y.; Lin, L. N.; Lu, Y.; Gao, H. L.; Chen, S. F.; Yang, P.; Yu, S. H. Synthesis of tunable theranostic Fe3O4@mesoporous silica nanospheres for biomedical applications. Adv. Healthc. Mater. 2012, 1, 327–331.CrossRefGoogle Scholar
  21. [21]
    Zhao, Y.; Luo, Z.; Li, M. H.; Qu, Q. Y.; Ma, X.; Yu, S. H.; Zhao, Y. L. A preloaded amorphous calcium carbonate/ doxorubicin@silica nanoreactor for pH-responsive delivery of an anticancer drug. Angew. Chem., Int. Ed. 2015, 54, 919–922.CrossRefGoogle Scholar
  22. [22]
    Wang, W.; Zhao, Y.; Yang, S.-Y.; Wu, Q.-S.; Ju, Y.-M.; Yu, S.-H. Engineered doxorubicin-calcium@silica nanospheres with tunable degradability for controlled drug delivery. Inorg. Chem. Front. 2017, 4, 1135–1140.CrossRefGoogle Scholar
  23. [23]
    Dong, Z. L.; Feng, L. Z.; Zhu, W. W.; Sun, X. Q.; Gao, M.; Zhao, H.; Chao, Y.; Liu, Z. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials 2016, 110, 60–70.CrossRefGoogle Scholar
  24. [24]
    Overgaard, J. Combined adriamycin and hyperthermia treatment of a murine mammary carcinoma in vivo. Cancer Res. 1976, 36, 3077–3081.Google Scholar
  25. [25]
    Mauceri, H. J.; Hanna, N. N.; Beckett, M. A.; Gorski, D. H.; Staba, M. J.; Stellato, K. A.; Bigelow, K.; Heimann, R.; Gately, S.; Dhanabal, M. et al. Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature 1998, 394, 287–291.CrossRefGoogle Scholar
  26. [26]
    Liu, H. Y.; Chen, D.; Li, L. L.; Liu, T. L.; Tan, L. F.; Wu, X. L.; Tang, F. Q. Multifunctional gold nanoshells on silica nanorattles: A platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem., Int. Ed. 2011, 50, 891–895.CrossRefGoogle Scholar
  27. [27]
    Peng, J. J.; Zhao, L. Z.; Zhu, X. J.; Sun, Y.; Feng, W.; Gao, Y. H.; Wang, L. Y.; Li, F. Y. Hollow silica nanoparticles loaded with hydrophobic phthalocyanine for near-infrared photodynamic and photothermal combination therapy. Biomaterials 2013, 34, 7905–7912.CrossRefGoogle Scholar
  28. [28]
    Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433–3440.CrossRefGoogle Scholar
  29. [29]
    Song, X. R.; Wang, X. Y.; Yu, S. X.; Cao, J. B.; Li, S. H.; Li, J.; Liu, G.; Yang, H. H.; Chen, X. Y. Co9Se8 nanoplates as a new theranostic platform for photoacoustic/magnetic resonance dual-modal-imaging-guided chemo-photothermal combination therapy. Adv. Mater. 2015, 27, 3285–3291.CrossRefGoogle Scholar
  30. [30]
    Zheng, M. B.; Yue, C. X.; Ma, Y. F.; Gong, P.; Zhao, P. F.; Zheng, C. F.; Sheng, Z. H.; Zhang, P. F.; Wang, Z. H.; Cai, L. T. Single-step assembly of DOX/ICG loaded lipidpolymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 2013, 7, 2056–2067.CrossRefGoogle Scholar
  31. [31]
    Jaque, D.; Martinez Maestro, L.; del Rosal, B.; Haro- Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martín Rodríguez, E.; García Solé, J. Nanoparticles for photothermal therapies. Nanoscale 2014, 6, 9494–9530.CrossRefGoogle Scholar
  32. [32]
    Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.CrossRefGoogle Scholar
  33. [33]
    Shanmugam, V.; Selvakumar, S.; Yeh, C.-S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254–6287.CrossRefGoogle Scholar
  34. [34]
    Zhang, W.; Guo, Z. Y.; Huang, D. Q.; Liu, Z. M.; Guo, X.; Zhong, H. Q. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 2011, 32, 8555–8561.CrossRefGoogle Scholar
  35. [35]
    Wang, L. M.; Lin, X. Y.; Wang, J.; Hu, Z. J.; Ji, Y. L.; Hou, S.; Zhao, Y. L.; Wu, X. C.; Chen, C. Y. Novel insights into combating cancer chemotherapy resistance using a plasmonic nanocarrier: Enhancing drug sensitiveness and accumulation simultaneously with localized mild photothermal stimulus of femtosecond pulsed laser. Adv. Funct. Mater. 2014, 24, 4229–4239.CrossRefGoogle Scholar
  36. [36]
    Wang, L. M.; Sun, Q.; Wang, X.; Wen, T.; Yin, J. J.; Wang, P. Y.; Bai, R.; Zhang, X. Q.; Zhang, L. H.; Lu, A. H. et al. Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance. J. Am. Chem. Soc. 2015, 137, 1947–1955.CrossRefGoogle Scholar
  37. [37]
    Wang, P. Y.; Wang, X.; Wang, L. M.; Hou, X. Y.; Liu, W.; Chen, C. Y. Interaction of gold nanoparticles with proteins and cells. Sci. Technol. Adv. Mater. 2015, 16, 034610.CrossRefGoogle Scholar
  38. [38]
    Wang, L. M.; Chen, C. Y. Pathophysiologic mechanisms of biomedical nanomaterials. Toxicol. Appl. Pharmacol. 2016, 299, 30–40.CrossRefGoogle Scholar
  39. [39]
    Balladur, V.; Theretz, A.; Mandrand, B. Determination of the main forces driving DNA oligonucleotide adsorption onto aminated silica wafers. J. Colloid Interface Sci. 1997, 194, 408–418.CrossRefGoogle Scholar
  40. [40]
    Melzak, K. A.; Sherwood, C. S.; Turner, R. F. B.; Haynes, C. A. Driving forces for DNA adsorption to silica in perchlorate solutions. J. Colloid Interface Sci. 1996, 181, 635–644.CrossRefGoogle Scholar
  41. [41]
    Parida, S. K.; Dash, S.; Patel, S.; Mishra, B. K. Adsorption of organic molecules on silica surface. Adv. Colloid Interface Sci. 2006, 121, 77–110.CrossRefGoogle Scholar
  42. [42]
    Chou, T. C. Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res. 2010, 70, 440–446.CrossRefGoogle Scholar
  43. [43]
    Khafif, A.; Schantz, S. P.; Chou, T. C.; Edelstein, D.; Sacks, P. G. Quantitation of chemopreventive synergism between (–)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells. Carcinogenesis 1998, 19, 419–424.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Wei Wang
    • 1
  • Yang Zhao
    • 1
  • Bei-Bei Yan
    • 1
  • Liang Dong
    • 1
  • Yang Lu
    • 2
  • Shu-Hong Yu
    • 1
  1. 1.Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Centre for Excellence in Nanoscience, Hefei Science Centre of CASUniversity of Science and Technology of ChinaHefeiChina
  2. 2.School of Chemistry and Chemical EngineeringHefei University of TechnologyHefeiChina

Personalised recommendations