Nano Research

, Volume 11, Issue 6, pp 2897–2908 | Cite as

Ni-doped ZnCo2O4 atomic layers to boost the selectivity in solar-driven reduction of CO2

  • Katong Liu
  • Xiaodong Li
  • Liang Liang
  • Ju Wu
  • Xingchen Jiao
  • Jiaqi Xu
  • Yongfu Sun
  • Yi Xie
Research Article


Regulating the selectivity of CO2 photoreduction is particularly challenging. Herein, we propose ideal models of atomic layers with/without element doping to investigate the effect of doping engineering to tune the selectivity of CO2 photoreduction. Prototypical ZnCo2O4 atomic layers with/without Ni-doping were first synthesized. Density functional theory calculations reveal that introducing Ni atoms creates several new energy levels and increases the density-of-states at the conduction band minimum. Synchrotron radiation photoemission spectroscopy demonstrates that the band structures are suitable for CO2 photoreduction, while the surface photovoltage spectra demonstrate that Ni doping increases the carrier separation efficiency. In situ diffuse reflectance Fourier transform infrared spectra disclose that the CO2·− radical is the main intermediate, while temperature-programed desorption curves reveal that the ZnCo2O4 atomic layers with/without Ni doping favor the respective CO and CH4 desorption. The Ni-doped ZnCo2O4 atomic layers exhibit a 3.5-time higher CO selectivity than the ZnCo2O4 atomic layers. This work establishes a clear correlation between elemental doping and selectivity regulation for CO2 photoreduction, opening new possibilities for tailoring solar-driven photocatalytic behaviors.


atomic layers Ni-doped zinc cobaltite selectivity of CO2 reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Key Research and Development Program of China (Nos. 2017YFA0303500 and 2017YFA0207301), the National Natural Science Foundation of China (Nos. 21422107, U1632147, 21331005, U1532265, and 11621063), Youth Innovation Promotion Association of CAS (No. CX2340000100), Key Research Program of Frontier Sciences of CAS (No. QYZDY-SSW-SLH011), the Fundamental Research Funds for the Central Universities (Nos. WK2340000063 and WK2340000073) and Scientific Research Grant of Hefei Science Center of CAS (No. 2016HSC-IU002).

Supplementary material

12274_2017_1943_MOESM1_ESM.pdf (2.8 mb)
Ni-doped ZnCo2O4 atomic layers to boost the selectivity in solar-driven reduction of CO2


  1. [1]
    Lei, F. C.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Liu, K. T.; Liang, L.; Yao, T.; Pan, B. C.; Wei, S. Q.; Xie, Y. Metallic tin quantum sheets confined in graphene toward highefficiency carbon dioxide electroreduction. Nat. Commun. 2016, 7, 12697.CrossRefGoogle Scholar
  2. [2]
    Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.CrossRefGoogle Scholar
  3. [3]
    Liang, L.; Lei, F. C.; Gao, S.; Sun, Y. F.; Jiao, X. C.; Wu, J.; Qamar, S.; Xie, Y. Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol. Angew. Chem., Int. Ed. 2015, 54, 13971–13974.CrossRefGoogle Scholar
  4. [4]
    Xu, J. Q.; Li, X. D.; Liu, W.; Sun, Y. F.; Ju, Z. Y.; Yao, T.; Wang, C. M.; Ju, H. X.; Zhu, J. F.; Wei, S. Q. et al. Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers. Angew. Chem., Int. Ed. 2017, 56, 9121–9125.CrossRefGoogle Scholar
  5. [5]
    Qiu, Q. Q.; Li, S.; Jiang, J. J.; Wang, D. J.; Lin, Y. H.; Xie, T. F. Improved electron transfer between TiO2 and FTO interface by N-doped anatase TiO2 nanowires and its applications in quantum dot-sensitized solar cells. J. Phys. Chem. C 2017, 121, 21560–21570.CrossRefGoogle Scholar
  6. [6]
    Qamar, S.; Lei, F. C.; Liang, L.; Gao, S.; Liu, K. T.; Sun, Y. F.; Ni, W. X.; Xie, Y. Ultrathin TiO2 flakes optimizing solar light driven CO2 reduction. Nano Energy 2016, 26, 692–698.CrossRefGoogle Scholar
  7. [7]
    Li, H. Y.; Wang, D. J.; Fan, H. M.; Jiang, T. F.; Li, X. L.; Xie, T. F. Synthesis of ordered multivalent Mn-TiO2 nanospheres with tunable size: A high performance visiblelight photocatalyst. Nano Res. 2011, 4, 460–469.CrossRefGoogle Scholar
  8. [8]
    Jiang, T. F.; Xie, T. F.; Zhang, Y.; Chen, L. P.; Peng, L. L.; Li, H. Y.; Wang, D. J. Photoinduced charge transfer in ZnO/Cu2O heterostructure films studied by surface photovoltage technique. Phys. Chem. Chem. Phys. 2010, 12, 15476–15481.CrossRefGoogle Scholar
  9. [9]
    Fletcher, C.; Jiang, Y. J.; Sun, C. H.; Amal, R. Morphological evolution and electronic alteration of ZnO nanomaterials induced by Ni/Fe co-doping. Nanoscale 2014, 6, 7312–7318.CrossRefGoogle Scholar
  10. [10]
    Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A. R. Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Res. 2014, 7, 1528–1547.CrossRefGoogle Scholar
  11. [11]
    Mao, J.; Li, K.; Peng, T. Y. Recent advances in the photocatalytic CO2 reduction over semiconductors. Catal. Sci. Technol. 2013, 3, 2481–2498.CrossRefGoogle Scholar
  12. [12]
    Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 6826–6829.CrossRefGoogle Scholar
  13. [13]
    Liu, Y. W.; Xiao, C.; Li, Z.; Xie, Y. Vacancy engineering for tuning electron and phonon structures of two-dimensional materials. Adv. Energy Mater. 2016, 6, 1600436.CrossRefGoogle Scholar
  14. [14]
    Liu, K. T.; Zhang, W. S.; Lei, F. C.; Liang, L.; Gu, B. C.; Sun, Y. F.; Ye, B. J.; Ni, W. X.; Xie, Y. Nitrogen-doping induced oxygen divacancies in freestanding molybdenum trioxide single-layers boosting electrocatalytic hydrogen evolution. Nano Energy 2016, 30, 810–817.CrossRefGoogle Scholar
  15. [15]
    Sato, S.; Morikawa, T.; Saeki, S.; Kajino, T.; Motohiro, T. Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor. Angew. Chem., Int. Ed. 2010, 49, 5101–5105.CrossRefGoogle Scholar
  16. [16]
    Teramura, K.; Wang, Z.; Hosokawa, S.; Sakata, Y.; Tanaka, T. A doping technique that suppresses undesirable H2 evolution derived from overall water splitting in the highly selective photocatalytic conversion of CO2 in and by water. Chemistry 2014, 20, 9906–9909.CrossRefGoogle Scholar
  17. [17]
    Wang, S.; Ding, Z. X.; Wang, X. C. A stable ZnCo2O4 cocatalyst for photocatalytic CO2 reduction. Chem. Commun. 2015, 51, 1517–1519.CrossRefGoogle Scholar
  18. [18]
    Zhu, Y. Q.; Cao, C. B.; Zhang, J. T.; Xu, X. Y. Twodimensional ultrathin ZnCo2O4 nanosheets: General formation and lithium storage application. J. Mater. Chem. A 2015, 3, 9556–9564.CrossRefGoogle Scholar
  19. [19]
    Surendranath Y.; Kanan M. W.; Nocera D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.CrossRefGoogle Scholar
  20. [20]
    Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  21. [21]
    Shek, C. H.; Lai, J. K. L.; Lin, G. M. Investigation of interface defects in nanocrystalline SnO2 by positron annihilation. J. Phys. Chem. Solids 1999, 60, 189–193.CrossRefGoogle Scholar
  22. [22]
    Jiao, X. C.; Chen, Z. W.; Li, X. D.; Sun, Y. F.; Gao, S.; Yan, W. S.; Wang, C. M.; Zhang, Q.; Lin, Y.; Luo, Y. et al. Defect-mediated electron–hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594.CrossRefGoogle Scholar
  23. [23]
    Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded AlA4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 2011, 133, 20863–20868.CrossRefGoogle Scholar
  24. [24]
    Lei, F. C.; Zhang, L.; Sun, Y. F.; Liang, L.; Liu, K. T.; Xu, J. Q.; Zhang, Q.; Pan, B. C.; Luo, Y.; Xie, Y. Atomiclayer- confined doping for atomic-level insights into visiblelight water splitting. Angew. Chem., Int. Ed. 2015, 54, 9266–9270.CrossRefGoogle Scholar
  25. [25]
    Balti, I.; Mezni, A.; Dakhlaoui-Omrani, A.; Léone, P.; Viana, B.; Brinza, O.; Smiri, L.-S.; Jouini, N. Comparative study of Ni- and Co-substituted ZnO nanoparticles: Synthesis, optical, and magnetic properties. J. Phys. Chem. C 2011, 115, 15758–15766.CrossRefGoogle Scholar
  26. [26]
    Liu, Y. M.; Chen, S.; Quan, X.; Yu, H. T. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 2015, 137, 11631–11636.CrossRefGoogle Scholar
  27. [27]
    Neaţu, Ş.; Maciá-Agulló, J. A.; Concepción, P.; Garcia, H. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J. Am. Chem. Soc. 2014, 136, 15969–15976.CrossRefGoogle Scholar
  28. [28]
    Grabow, L. C.; Mavrikakis, M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 2011, 1, 365–384.CrossRefGoogle Scholar
  29. [29]
    Wilcox, E. M.; Roberts, G. W.; Spivey, J. J. Direct catalytic formation of acetic acid from CO2 and methane. Catal. Today 2003, 88, 83–90.CrossRefGoogle Scholar
  30. [30]
    Cao, Y.; Li, H. R.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Promotional effects of rare earth elements (Sc, Y, Ce, and Pr) on nimgal catalysts for dry reforming of methane. RSC Adv. 2016, 6, 112215–112225.CrossRefGoogle Scholar
  31. [31]
    Wang, W.; Gong, J. L. Methanation of carbon dioxide: An overview. Front. Chem. Sci. Eng. 2011, 5, 2–10.CrossRefGoogle Scholar
  32. [32]
    Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326–11353.CrossRefGoogle Scholar
  33. [33]
    Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821–831.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in NanoscienceUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations