Nano Research

, Volume 11, Issue 6, pp 2909–2931 | Cite as

Space-confined vapor deposition synthesis of two dimensional materials

  • Shasha Zhou
  • Lin GanEmail author
  • Deli Wang
  • Huiqiao Li
  • Tianyou ZhaiEmail author
Review Article


Two dimensional (2D) nanomaterials are promising fundamental building blocks for use in the next-generation semiconductor industry due to their unique geometry and excellent (opto)-electronic properties. However, large scale high quality fabrication of 2D nanomaterials remains challenging. Thus, the development of controllable fabrication methods for 2D materials is essential for their future practical application. In this review, we will discuss the importance of the space-confined vapor deposition strategy in the controllable fabrication of 2D materials and summarize recent progress in the utilization of this strategy for the synthesis of novel materials or structures. Using this method, various high quality ultrathin 2D materials, including large-area graphene and boron nitride, ReS2/ReSe2, HfS2, pyramid-structured multilayer MoS2, and the topological insulators Bi2Se3 and Bi2Te3, have been successfully obtained. Additionally, by utilizing van der Waals epitaxy growth substrates such as mica or other 2D materials, patterned growth of 2D nanomaterials can be easily achieved via a surface-induced growth mechanism. Finally, we provide a short prospect for future development of this strategy.


two dimensional vapor deposition space confinement transition metal dichalcogenides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 91622117, 51472097, 51727809, and 21501060), the National Key Research and Development Program of China (No. 2016YFB0401100), the National Basic Research Program of China (No. 2015CB932600), and the Fundamental Research Funds for the Central University (Nos. 2015ZDTD038 and 2017KFKJXX007).


  1. [1]
    Tan, C. L.; Cao, X. H.; Wu, X.-J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G.-H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.CrossRefGoogle Scholar
  2. [2]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  3. [3]
    Lee, C. G.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.CrossRefGoogle Scholar
  4. [4]
    Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308–1308.CrossRefGoogle Scholar
  5. [5]
    Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.CrossRefGoogle Scholar
  6. [6]
    Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44–126.CrossRefGoogle Scholar
  7. [7]
    Guo, Y. P.; Wei, Y. Q.; Li, H. Q.; Zhai, T. Y. Layer structured materials for advanced energy storage and conversion. Small 2017, 13, 1701649.CrossRefGoogle Scholar
  8. [8]
    Zhou, S. S.; Chen, J. N.; Gan, L.; Zhang, Q.; Zheng, Z.; Li, H. Q.; Zhai, T. Y. Scalable production of self-supported WS2/CNFs by electrospinning as the anode for highperformance lithium-ion batteries. Sci. Bull. 2016, 61, 227–235.CrossRefGoogle Scholar
  9. [9]
    Zhuge, F. W.; Zheng, Z.; Luo, P.; Lv, L.; Huang, Y.; Li, H. Q.; Zhai, T. Y. Nanostructured materials and architectures for advanced infrared photodetection. Adv. Mater. Technol. 2017, 2, 1700005.CrossRefGoogle Scholar
  10. [10]
    Gong, C. H.; Zhang, Y. X.; Chen, W.; Chu, J. W.; Lei, T. Y.; Pu, J. R.; Dai, L. P.; Wu, C. Y.; Cheng, Y. H.; Zhai, T. Y. et al. Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides. Adv. Sci. 2017, 4, 1700231.CrossRefGoogle Scholar
  11. [11]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  12. [12]
    Wan, X. F.; Zhou, N.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Towards wafer-size strictly monolayer graphene on copper via cyclic atmospheric chemical vapor deposition. Carbon 2016, 110, 384–389.CrossRefGoogle Scholar
  13. [13]
    Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.CrossRefGoogle Scholar
  14. [14]
    Ganatra, R.; Zhang, Q. Few-layer MoS2: A promising layered semiconductor. ACS Nano 2014, 8, 4074–4099.CrossRefGoogle Scholar
  15. [15]
    Lim, Y. R.; Song, W.; Han, J. K.; Lee, Y. B.; Kim, S. J.; Myung, S.; Lee, S. S.; An, K. S.; Choi, C. J.; Lim, J. Wafer-scale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv. Mater. 2016, 28, 5025–5030.CrossRefGoogle Scholar
  16. [16]
    Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.CrossRefGoogle Scholar
  17. [17]
    Makinistian, L.; Albanesi, E. A. First-principles calculations of the band gap and optical properties of germanium sulfide. Phys. Rev. B 2006, 74, 045206.CrossRefGoogle Scholar
  18. [18]
    Zhang, E. Z.; Jin, Y. B.; Yuan, X.; Wang, W. Y.; Zhang, C.; Tang, L.; Liu, S. S.; Zhou, P.; Hu, W. D.; Xiu, F. X. ReS2- based field-effect transistors and photodetectors. Adv. Funct. Mater. 2015, 25, 4076–4082.CrossRefGoogle Scholar
  19. [19]
    Li, H.; Cao, J.; Zheng, W. S.; Chen, Y. L.; Wu, D.; Dang, W. H.; Wang, K.; Peng, H. L.; Liu, Z. F. Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc. 2012, 134, 6132–6135.CrossRefGoogle Scholar
  20. [20]
    Li, L.; Wang, W. K.; Gan, L.; Zhou, N.; Zhu, X. D.; Zhang, Q.; Li, H. Q.; Tian, M. L.; Zhai, T. Y. Ternary Ta2NiSe5 flakes for a high-performance infrared photodetector. Adv. Funct. Mater. 2016, 26, 8281–8289.CrossRefGoogle Scholar
  21. [21]
    Wu, J. X.; Yuan, H. T.; Meng, M. M.; Chen, C.; Sun, Y.; Chen, Z. Y.; Dang, W. H.; Tan, C. W.; Liu, Y. J.; Yin, J. B. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530–534.CrossRefGoogle Scholar
  22. [22]
    Liu, Y. J.; Tang, M.; Meng, M. M.; Wang, M. Z.; Wu, J. X.; Yin, J. B.; Zhou, Y. B.; Guo, Y. F.; Tan, C. W.; Dang, W. H. et al. Epitaxial growth of ternary topological insulator Bi2Te2Se 2D crystals on mica. Small 2017, 13, 1603572.CrossRefGoogle Scholar
  23. [23]
    Zhuge, F. W.; Luo, P.; Zhai, T. Y. Lead-free perovskites for X-ray detecting. Sci. Bull. 2017, 62, 1491–1493.CrossRefGoogle Scholar
  24. [24]
    Wang, Y. G.; Gan, L.; Chen, J. N.; Yang, R.; Zhai, T. Y. Achieving highly uniform two-dimensional PbI2 flakes for photodetectors via space confined physical vapor deposition. Sci. Bull. 2017, in press, DOI: 10.1016/j.scib.2017.11.011.Google Scholar
  25. [25]
    Ciesielski, A.; Samorì, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 2014, 43, 381–398.CrossRefGoogle Scholar
  26. [26]
    Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630.CrossRefGoogle Scholar
  27. [27]
    Ji, Q. Q.; Zhang, Y.; Zhang, Y. F.; Liu, Z. F. Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: Engineered substrates from amorphous to single crystalline. Chem. Soc. Rev. 2015, 44, 2587–2602.CrossRefGoogle Scholar
  28. [28]
    Zheng, S. J.; Sun, L. F.; Yin, T. T.; Dubrovkin, A. M.; Liu, F. C.; Liu, Z.; Shen, Z. X.; Fan, H. J. Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations. Appl. Phys. Lett. 2015, 106, 063113.CrossRefGoogle Scholar
  29. [29]
    Liu, Z.; Ma, L. L.; Shi, G.; Zhou, W.; Gong, Y. J.; Lei, S. D.; Yang, X. B.; Zhang, J. N.; Yu, J. J.; Hackenberg, K. P. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 2013, 8, 119–124.CrossRefGoogle Scholar
  30. [30]
    Chiu, M.-H.; Zhang, C. D.; Shiu, H.-W.; Chuu, C.-P.; Chen, C.-H.; Chang, C.-Y. S.; Chen, C.-H.; Chou, M.-Y.; Shih, C.-K.; Li, L.-J. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 2015, 6, 7666.CrossRefGoogle Scholar
  31. [31]
    Yu, J. H.; Lee, H. R.; Hong, S. S.; Kong, D. S.; Lee, H. W.; Wang, H. T.; Xiong, F.; Wang, S.; Cui, Y. Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers. Nano Lett. 2015, 15, 1031–1035.CrossRefGoogle Scholar
  32. [32]
    Chen, H. L.; Wen, X. W.; Zhang, J.; Wu, T. M.; Gong, Y. J.; Zhang, X.; Yuan, J. T.; Yi, C. Y.; Lou, J.; Ajayan, P. M. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 2016, 7, 12512.CrossRefGoogle Scholar
  33. [33]
    Chen, P.; Xiang, J. Y.; Yu, H.; Zhang, J.; Xie, G. B.; Wu, S.; Lu, X. B.; Wang, G. L.; Zhao, J.; Wen, F. S. et al. Gate tunable MoS2–black phosphorus heterojunction devices. 2D Mater. 2015, 2, 034009.CrossRefGoogle Scholar
  34. [34]
    He, Y. M.; Sobhani, A.; Lei, S. D.; Zhang, Z. H.; Gong, Y. J.; Jin, Z. H.; Zhou, W.; Yang, Y. C.; Zhang, Y.; Wang, X. F. et al. Layer engineering of 2D semiconductor junctions. Adv. Mater. 2016, 28, 5126–5132.CrossRefGoogle Scholar
  35. [35]
    Chen, K.; Wan, X.; Xu, J. B. Epitaxial stitching and stacking growth of atomically thin transition-metal dichalcogenides (TMDCs) heterojunctions. Adv. Funct. Mater. 2017, 27, 1603884.CrossRefGoogle Scholar
  36. [36]
    Wu, T. R.; Zhang, X. F.; Yuan, Q. H.; Xue, J. C.; Lu, G. Y.; Liu, Z. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Yu, Q. K. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat. Mater. 2016, 15, 43–47.CrossRefGoogle Scholar
  37. [37]
    Song, X. J.; Gao, J. F.; Nie, Y. F.; Gao, T.; Sun, J. Y.; Ma, D. L.; Li, Q. C.; Chen, Y. B.; Jin, C. H.; Bachmatiuk, A. et al. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Res. 2015, 8, 3164–3176.CrossRefGoogle Scholar
  38. [38]
    Mohapatra, P. K.; Deb, S.; Singh, B. P.; Vasa, P.; Dhar, S. Strictly monolayer large continuous MoS2 films on diverse substrates and their luminescence properties. Appl. Phys. Lett. 2016, 108, 042101.CrossRefGoogle Scholar
  39. [39]
    Zheng, J. Y.; Yan, X. X.; Lu, Z. X.; Qiu, H. L.; Xu, G. C.; Zhou, X.; Wang, P.; Pan, X. Q.; Liu, K. H.; Jiao, L. Y. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv. Mater. 2017, 29, 1604540.CrossRefGoogle Scholar
  40. [40]
    Li, X. B.; Cui, F. F.; Feng, Q. L.; Wang, G.; Xu, X. S.; Wu, J. X.; Mao, N. N.; Liang, X.; Zhang, Z. Y.; Zhang, J. et al. Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 2016, 8, 18956–18962.CrossRefGoogle Scholar
  41. [41]
    Cui, F. F.; Li, X. B.; Feng, Q. L.; Yin, J. B.; Zhou, L.; Liu, D. Y.; Liu, K. Q.; He, X. X.; Liang, X.; Liu, S. Z. et al. Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Res. 2017, 10, 2732–2742.CrossRefGoogle Scholar
  42. [42]
    Lin, M.; Wu, D.; Zhou, Y.; Huang, W.; Jiang, W.; Zheng, W. S.; Zhao, S. L.; Jin, C. H.; Guo, Y. F.; Peng, H. L. et al. Controlled growth of atomically thin In2Se3 flakes by van der waals epitaxy. J. Am. Chem. Soc. 2013, 135, 13274–13277.CrossRefGoogle Scholar
  43. [43]
    Wu, J. X.; Tan, C. W.; Tan, Z. J.; Liu, Y. J.; Yin, J. B.; Dang, W. H.; Wang, M. Z.; Peng, H. L. Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Lett. 2017, 17, 3021–3026.CrossRefGoogle Scholar
  44. [44]
    Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Largearea synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  45. [45]
    Bhaviripudi, S.; Jia, X. T.; Dresselhaus, M. S.; Kong, J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 2010, 10, 4128–4133.CrossRefGoogle Scholar
  46. [46]
    Chen, C.-C.; Kuo, C.-J.; Liao, C.-D.; Chang, C.-F.; Tseng, C.-A.; Liu, C.-R.; Chen, Y.-T. Growth of large-area graphene single crystals in confined reaction space with diffusiondriven chemical vapor deposition. Chem. Mater. 2015, 27, 6249–6258.CrossRefGoogle Scholar
  47. [47]
    Zhang, Y.; Zhang, L. Y.; Kim, P.; Ge, M. Y.; Li, Z.; Zhou, C. W. Vapor trapping growth of single-crystalline graphene flowers: Synthesis, morphology, and electronic properties. Nano Lett. 2012, 12, 2810–2816.CrossRefGoogle Scholar
  48. [48]
    Li, X. S.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 2011, 133, 2816–2819.CrossRefGoogle Scholar
  49. [49]
    Hao, Y. F.; Bharathi, M.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 2013, 342, 720–723.CrossRefGoogle Scholar
  50. [50]
    Chen, S. S.; Ji, H. X.; Chou, H.; Li, Q. Y.; Li, H. Y.; Suk, J. W.; Piner, R.; Liao, L.; Cai, W. W.; Ruoff, R. S. Millimeter-size single-crystal graphene by suppressing evaporative loss of Cu during low pressure chemical vapor deposition. Adv. Mater. 2013, 25, 2062–2065.CrossRefGoogle Scholar
  51. [51]
    Phan, H. D.; Jung, J.; Kim, Y.; Huynh, V. N.; Lee, C. Large-area single-crystal graphene grown on a recrystallized Cu(111) surface by using a hole-pocket method. Nanoscale 2016, 8, 13781–13789.CrossRefGoogle Scholar
  52. [52]
    Wood, J. D.; Schmucker, S. W.; Lyons, A. S.; Pop, E.; Lyding, J. W. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 2011, 11, 4547–4554.CrossRefGoogle Scholar
  53. [53]
    Wang, C. C.; Chen, W.; Han, C.; Wang, G.; Tang, B. B.; Tang, C. X.; Wang, Y.; Zou, W. N.; Zhang, X.-A.; Qin, S. Q. et al. Growth of millimeter-size single crystal graphene on Cu foils by circumfluence chemical vapor deposition. Sci. Rep. 2014, 4, 4537.CrossRefGoogle Scholar
  54. [54]
    Ding, D.; Solís-Fernández, P.; Hibino, H.; Ago, H. Spatially controlled nucleation of single-crystal graphene on Cu assisted by stacked Ni. ACS Nano 2016, 10, 11196–11204.CrossRefGoogle Scholar
  55. [55]
    Wu, T. R.; Ding, G. Q.; Shen, H. L.; Wang, H. M.; Sun, L.; Jiang, D.; Xie, X. M.; Jiang, M. H. Triggering the continuous growth of graphene toward millimeter-sized grains. Adv. Funct. Mater. 2013, 23, 198–203.CrossRefGoogle Scholar
  56. [56]
    Wang, H.; Wang, G. Z.; Bao, P. F.; Yang, S. L.; Zhu, W.; Xie, X.; Zhang, W.-J. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. J. Am. Chem. Soc. 2012, 134, 3627–3630.CrossRefGoogle Scholar
  57. [57]
    Yan, Z.; Lin, J.; Peng, Z. W.; Sun, Z. Z.; Zhu, Y.; Li, L.; Xiang, C. S.; Samuel, E. L.; Kittrell, C.; Tour, J. M. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 2012, 6, 9110–9117.CrossRefGoogle Scholar
  58. [58]
    Yan, Z.; Liu, Y. Y.; Ju, L.; Peng, Z. W.; Lin, J.; Wang, G.; Zhou, H. Q.; Xiang, C. S.; Samuel, E. L. G.; Kittrell, C. et al. Large hexagonal bi- and trilayer graphene single crystals with varied interlayer rotations. Angew. Chem., Int. Ed. 2014, 53, 1565–1569.CrossRefGoogle Scholar
  59. [59]
    Somani, P. R.; Somani, S. P.; Umeno, M. Planer nanographenes from camphor by CVD. Chem. Phys. Lett. 2006, 430, 56–59.CrossRefGoogle Scholar
  60. [60]
    Pollard, A. J.; Nair, R. R.; Sabki, S. N.; Staddon, C. R.; Perdigao, L. M. A.; Hsu, C. H.; Garfitt, J. M.; Gangopadhyay, S.; Gleeson, H. F.; Geim, A. K. et al. Formation of monolayer graphene by annealing sacrificial nickel thin films. J. Phys. Chem. C. 2009, 113, 16565–16567.CrossRefGoogle Scholar
  61. [61]
    Fang, W. J.; Hsu, A. L.; Caudillo, R.; Song, Y.; Birdwell, A. G.; Zakar, E.; Kalbac, M.; Dubey, M.; Palacios, T.; Dresselhaus, M. S. et al. Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by Raman spectroscopy. Nano Lett. 2013, 13, 1541–1548.CrossRefGoogle Scholar
  62. [62]
    Fang, W. J.; Hsu, A. L.; Song, Y.; Birdwell, A. G.; Amani, M.; Dubey, M.; Dresselhaus, M. S.; Palacios, T.; Kong, J. Asymmetric growth of bilayer graphene on copper enclosures using low-pressure chemical vapor deposition. ACS Nano 2014, 8, 6491–6499.CrossRefGoogle Scholar
  63. [63]
    Rümmeli, M. H.; Gorantla, S.; Bachmatiuk, A.; Phieler, J.; Geißler, N.; Ibrahim, I.; Pang, J. B.; Eckert, J. On the role of vapor trapping for chemical vapor deposition (CVD) grown graphene over copper. Chem. Mater. 2013, 25, 4861–4866.CrossRefGoogle Scholar
  64. [64]
    Song, Y. N.; Pan, D. Y.; Cheng, Y.; Wang, P.; Zhao, P.; Wang, H. T. Growth of large graphene single crystal inside a restricted chamber by chemical vapor deposition. Carbon 2015, 95, 1027–1032.CrossRefGoogle Scholar
  65. [65]
    Lv, R. T.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y. F.; Mallouk, T. E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of singleand few-layer nanosheets. Acc. Chem. Res. 2015, 48, 56–64.CrossRefGoogle Scholar
  66. [66]
    Zhang, W. S.; Zhang, P. P.; Su, Z. Q.; Wei, G. Synthesis and sensor applications of MoS2-based nanocomposites. Nanoscale 2015, 7, 18364–18378.CrossRefGoogle Scholar
  67. [67]
    Laskar, M. R.; Ma, L.; Kannappan, S.; Park, P. S.; Krishnamoorthy, S.; Nath, D. N.; Lu, W.; Wu, Y. Y.; Rajan, S. Large area single crystal (0001) oriented MoS2. Appl. Phys. Lett. 2013, 102, 252108.CrossRefGoogle Scholar
  68. [68]
    Liu, K.-K.; Zhang, W. J.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.; Chang, C.-S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.CrossRefGoogle Scholar
  69. [69]
    Fei, L. F.; Lei, S. J.; Zhang, W.-B.; Lu, W.; Lin, Z. Y.; Lam, C. H.; Chai, Y.; Wang, Y. Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nat. Commun. 2016, 7, 12206.CrossRefGoogle Scholar
  70. [70]
    van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.CrossRefGoogle Scholar
  71. [71]
    McCreary, K. M.; Hanbicki, A. T.; Robinson, J. T.; Cobas, E.; Culbertson, J. C.; Friedman, A. L.; Jernigan, G. G.; Jonker, B. T. Large-area synthesis of continuous and uniform MoS2 monolayer films on graphene. Adv. Funct. Mater. 2014, 24, 6449–6454.CrossRefGoogle Scholar
  72. [72]
    O’Brien, M.; McEvoy, N.; Hallam, T.; Kim, H. Y.; Berner, N. C.; Hanlon, D.; Lee, K.; Coleman, J. N.; Duesberg, G. S. Transition metal dichalcogenide growth via close proximity precursor supply. Sci. Rep. 2014, 4, 7374.CrossRefGoogle Scholar
  73. [73]
    Zhang, J.; Yu, H.; Chen, W.; Tian, X. Z.; Liu, D. H.; Cheng, M.; Xie, G. B.; Yang, W.; Yang, R.; Bai, X. D. et al. Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano 2014, 8, 6024–6030.CrossRefGoogle Scholar
  74. [74]
    Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J. H.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W. et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010, 10, 4328–4334.CrossRefGoogle Scholar
  75. [75]
    Tu, Z. Y.; Li, G. D.; Ni, X.; Meng, L. X.; Bai, S.; Chen, X. B.; Lou, J. J.; Qin, Y. Synthesis of large monolayer single crystal MoS2 nanosheets with uniform size through a double-tube technology. Appl. Phys. Lett. 2016, 109, 223101.CrossRefGoogle Scholar
  76. [76]
    Lin, Z. Y.; Zhao, Y. D.; Zhou, C. J.; Zhong, R.; Wang, X. S.; Tsang, Y. H.; Chai, Y. Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci. Rep. 2015, 5, 18596.CrossRefGoogle Scholar
  77. [77]
    Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.CrossRefGoogle Scholar
  78. [78]
    Han, G. H.; Kybert, N. J.; Naylor, C. H.; Lee, B. S.; Ping, J. L.; Park, J. H.; Kang, J.; Lee, S. Y.; Lee, Y. H.; Agarwal, R. et al. Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nat. Commun. 2015, 6, 6128.CrossRefGoogle Scholar
  79. [79]
    Wang, X. S.; Feng, H. B.; Wu, Y. M.; Jiao, L. Y. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 2013, 135, 5304–5307.CrossRefGoogle Scholar
  80. [80]
    Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.CrossRefGoogle Scholar
  81. [81]
    Liu, X. C.; Qu, D. S.; Ryu, J.; Ahmed, F.; Yang, Z.; Lee, D.; Yoo, W. J. P-type polar transition of chemically doped multilayer MoS2 transistor. Adv. Mater. 2016, 28, 2345–2351.CrossRefGoogle Scholar
  82. [82]
    Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Twodimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.CrossRefGoogle Scholar
  83. [83]
    Yan, C. Y.; Gan, L.; Zhou, X.; Guo, J.; Huang, W. J.; Huang, J. W.; Jin, B.; Xiong, J.; Zhai, T. Y.; Li, Y. R. Spaceconfined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv. Funct. Mater. 2017, 27, 1702918.CrossRefGoogle Scholar
  84. [84]
    Zheng, B. J.; Chen, Y. F.; Wang, Z. G.; Qi, F.; Huang, Z. S.; Hao, X.; Li, P. J.; Zhang, W. L.; Li, Y. R. Vertically oriented few-layered HfS2 nanosheets: Growth mechanism and optical properties. 2D Mater. 2016, 3, 035024.CrossRefGoogle Scholar
  85. [85]
    Zhou, Z. P.; Ci, L. J.; Song, L.; Yan, X. Q.; Liu, D. F.; Yuan, H. J.; Gao, Y.; Wang, J. X.; Liu, L. F.; Zhou, W. Y. et al. Random networks of single-walled carbon nanotubes. J. Phys. Chem. B 2004, 108, 10751–10753.CrossRefGoogle Scholar
  86. [86]
    Chenet, D. A.; Aslan, O. B.; Huang, P. Y.; Fan, C.; van der Zande, A. M.; Heinz, T. F.; Hone, J. C. In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett. 2015, 15, 5667–5672.CrossRefGoogle Scholar
  87. [87]
    He, R.; Yan, J.-A.; Yin, Z. Y.; Ye, Z. P.; Ye, G. H.; Cheng, J.; Li, J.; Lui, C. H. Coupling and stacking order of ReS2 atomic layers revealed by ultralow-frequency Raman spectroscopy. Nano Lett. 2016, 16, 1404–1409.CrossRefGoogle Scholar
  88. [88]
    Yang, S. X.; Cong, W.; Sahin, H.; Chen, H.; Li, Y.; Li, S. S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J. B. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666.CrossRefGoogle Scholar
  89. [89]
    Hafeez, M.; Gan, L.; Saleem Bhatti, A.; Zhai, T. Y. Rhenium dichalcogenides (ReX2, X = S or Se): An emerging class of TMDs family. Mater. Chem. Front. 2017, 1, 1917–1932.CrossRefGoogle Scholar
  90. [90]
    Liu, F. C.; Zheng, S. J.; He, X. X.; Chaturvedi, A.; He, J. F.; Chow, W. L.; Mion, T. R.; Wang, X. L.; Zhou, J. D.; Fu, Q. D. et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 2016, 26, 1169–1177.CrossRefGoogle Scholar
  91. [91]
    Lorchat, E.; Froehlicher, G.; Berciaud, S. Splitting of interlayer shear modes and photon energy dependent anisotropic Raman response in n-layer ReSe2 and ReS2. ACS Nano 2016, 10, 2752–2760.CrossRefGoogle Scholar
  92. [92]
    McCreary, A.; Simpson, J. R.; Wang, Y. X.; Rhodes, D.; Fujisawa, K.; Balicas, L.; Dubey, M.; Crespi, V. H.; Terrones, M.; Hight Walker, A. R. Intricate resonant Raman response in anisotropic ReS2. Nano Lett. 2017, 17, 5897–5907.CrossRefGoogle Scholar
  93. [93]
    Keyshar, K.; Gong, Y. J.; Ye, G. L.; Brunetto, G.; Zhou, W.; Cole, D. P.; Hackenberg, K.; He, Y. M.; Machado, L.; Kabbani, M. et al. Chemical vapor deposition of monolayer rhenium disulfide (ReS2). Adv. Mater. 2015, 27, 4640–4648.CrossRefGoogle Scholar
  94. [94]
    He, X. X.; Liu, F. C.; Hu, P.; Fu, W.; Wang, X. L.; Zeng, Q. S.; Zhao, W.; Liu, Z. Chemical vapor deposition of high-quality and atomically layered ReS2. Small 2015, 11, 5423–5429.CrossRefGoogle Scholar
  95. [95]
    Huang, W. J.; Gan, L.; Yang, H. T.; Zhou, N.; Wang, R. Y.; Wu, W. H.; Li, H. Q.; Ma, Y.; Zeng, H. B.; Zhai, T. Y. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition. Adv. Funct. Mater. 2017, 27, 1702448.CrossRefGoogle Scholar
  96. [96]
    Hao, Y. F.; Meng, G. W.; Ye, C. H.; Zhang, X. R.; Zhang, L. D. Kinetics-driven growth of orthogonally branched single-crystalline magnesium oxide nanostructures. J. Phys. Chem. B 2005, 109, 11204–11208.CrossRefGoogle Scholar
  97. [97]
    Zhou, Y. B.; Nie, Y. F.; Liu, Y. J.; Yan, K.; Hong, J. H.; Jin, C. H.; Zhou, Y.; Yin, J. B.; Liu, Z. F.; Peng, H. L. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano 2014, 8, 1485–1490.CrossRefGoogle Scholar
  98. [98]
    Zheng, W. S.; Xie, T.; Zhou, Y.; Chen, Y. L.; Jiang, W.; Zhao, S. L.; Wu, J. X.; Jing, Y. M.; Wu, Y.; Chen, G. C. et al. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nat. Commun. 2015, 6, 6972.CrossRefGoogle Scholar
  99. [99]
    Koma, A. Van der Waals epitaxy—A new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 1992, 216, 72–76.CrossRefGoogle Scholar
  100. [100]
    Wang, Q. S.; Safdar, M.; Xu, K.; Mirza, M.; Wang, Z. X.; He, J. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 2014, 8, 7497–7505.CrossRefGoogle Scholar
  101. [101]
    Wang, Q. S.; Xu, K.; Wang, Z. X.; Wang, F.; Huang, Y.; Safdar, M.; Zhan, X. Y.; Wang, F. M.; Cheng, Z. Z.; He, J. Van der Waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices. Nano Lett. 2015, 15, 1183–1189.CrossRefGoogle Scholar
  102. [102]
    Wang, F.; Wang, Z. X.; Shifa, T. A.; Wen, Y.; Wang, F. M.; Zhan, X. Y.; Wang, Q. S.; Xu, K.; Huang, Y.; Yin, L. et al. Two-dimensional non-layered materials: Synthesis, properties and applications. Adv. Funct. Mater. 2017, 27, 1603254.CrossRefGoogle Scholar
  103. [103]
    Ling, X.; Lin, Y. X.; Ma, Q.; Wang, Z. Q.; Song, Y.; Yu, L. L.; Huang, S. X.; Fang, W. J.; Zhang, X.; Hsu, A. L. et al. Parallel stitching of 2D materials. Adv. Mater. 2016, 28, 2322–2329.CrossRefGoogle Scholar
  104. [104]
    Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.CrossRefGoogle Scholar
  105. [105]
    Li, M. Y.; Shi, Y.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p–n junction with an atomically sharp interface. Science 2015, 349, 524–528.CrossRefGoogle Scholar
  106. [106]
    Zhou, X.; Zhou, N.; Li, C.; Song, H. Y.; Zhang, Q.; Hu, X. Z.; Gan, L.; Li, H. Q.; Lü, J. T.; Luo, J. et al. Vertical heterostructures based on SnSe2/MoS2 for high performance photodetectors. 2D Mater. 2017, 4, 025048.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations