Nano Research

, Volume 11, Issue 6, pp 3371–3384 | Cite as

Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition

  • Changyong Lan
  • Ziyao Zhou
  • Zhifei Zhou
  • Chun Li
  • Lei Shu
  • Lifan Shen
  • Dapan Li
  • Ruoting Dong
  • SenPo Yip
  • Johnny C. HoEmail author
Research Article


Two-dimensional (2D) nanomaterials have recently attracted considerable attention due to their promising applications in next-generation electronics and optoelectronics. In particular, the large-scale synthesis of high-quality 2D materials is an essential requirement for their practical applications. Herein, we demonstrate the wafer-scale synthesis of highly crystalline and homogeneous monolayer WS2 by an enhanced chemical vapor deposition (CVD) approach, in which precise control of the precursor vapor pressure can be effectively achieved in a multi-temperature zone horizontal furnace. In contrast to conventional synthesis methods, the obtained monolayer WS2 has excellent uniformity both in terms of crystallinity and morphology across the entire substrate wafer grown (e.g., 2 inches in diameter), as corroborated by the detailed characterization. When incorporated in typical rigid photodetectors, the monolayer WS2 leads to a respectable photodetection performance, with a responsivity of 0.52 mA/W, a detectivity of 4.9 × 109 Jones, and a fast response speed (< 560 μs). Moreover, once fabricated as flexible photodetectors on polyimide, the monolayer WS2 leads to a responsivity of up to 5 mA/W. Importantly, the photocurrent maintains 89% of its initial value even after 3,000 bending cycles. These results highlight the versatility of the present technique, which allows its applications in larger substrates, as well as the excellent mechanical flexibility and robustness of the CVD-grown, homogenous WS2 monolayers, which can promote the development of advanced flexible optoelectronic devices.


wafer-scale WS2 monolayer chemical vapor deposition flexible optoelectronics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the General Research Fund of the Research Grants Council of Hong Kong SAR, China (CityU 11275916), the National Natural Science Foundation of China (Nos. 51672229, 61605024 and 61522403), the Science Technology and Innovation Committee of Shenzhen Municipality (No. JCYJ20160229165240684) and a grant from the Shenzhen Research Institute, City University of Hong Kong.

Supplementary material

12274_2017_1941_MOESM1_ESM.pdf (1.8 mb)
Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition


  1. [1]
    Li, X. M.; Tao, L.; Chen, Z. F.; Fang, H.; Li, X. S.; Wang, X. R.; Xu, J.-B.; Zhu, H. W. Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 2017, 4, 021306.CrossRefGoogle Scholar
  2. [2]
    Tan, C. L.; Cao, X. H.; Wu, X.-J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G.-H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.CrossRefGoogle Scholar
  3. [3]
    Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.CrossRefGoogle Scholar
  4. [4]
    Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphenelike two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.CrossRefGoogle Scholar
  5. [5]
    Novoselov, K. S. Nobel lecture: Graphene: Materials in the flatland. Rev. Mod. Phys. 2011, 83, 837–849.CrossRefGoogle Scholar
  6. [6]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.CrossRefGoogle Scholar
  7. [7]
    Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859–8876.CrossRefGoogle Scholar
  8. [8]
    Liu, B. L; Abbas, A.; Zhou, C. W. Two-dimensional semiconductors: From materials preparation to electronic applications. Adv. Electron. Mater. 2017, 3, 1700045.CrossRefGoogle Scholar
  9. [9]
    Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.CrossRefGoogle Scholar
  10. [10]
    Wang, H. T.; Yuan, H. T.; Hong, S. S.; Li, Y. B.; Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2664–2680.CrossRefGoogle Scholar
  11. [11]
    Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013, 13, 3664–3670.CrossRefGoogle Scholar
  12. [12]
    Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305.CrossRefGoogle Scholar
  13. [13]
    Hanbicki, A. T.; Currie, M.; Kioseoglou, G.; Friedman, A. L.; Jonker, B. T. Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2. Solid State Commun. 2015, 203, 16–20.CrossRefGoogle Scholar
  14. [14]
    Zhu, B. R.; Chen, X.; Cui, X. D. Exciton binding energy of monolayer WS2. Sci. Rep. 2015, 5, 9218.CrossRefGoogle Scholar
  15. [15]
    Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Twodimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.CrossRefGoogle Scholar
  16. [16]
    Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.CrossRefGoogle Scholar
  17. [17]
    Chang, H.-Y.; Yang, S. X.; Lee, J.; Tao, L.; Hwang, W.-S.; Jena, D.; Lu, N. S.; Akinwande, D. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 2013, 7, 5446–5452.CrossRefGoogle Scholar
  18. [18]
    Pu, J.; Funahashi, K.; Chen, C. H.; Li, M. Y.; Li, L. J.; Takenobu, T. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 2016, 28, 4111–4119.CrossRefGoogle Scholar
  19. [19]
    Lim, Y. R.; Song, W.; Han, J. K.; Lee, Y. B.; Kim, S. J.; Myung, S.; Lee, S. S.; An, K. S.; Choi, C. J.; Lim, J. Waferscale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv. Mater. 2016, 28, 5025–5030.CrossRefGoogle Scholar
  20. [20]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Twodimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossRefGoogle Scholar
  21. [21]
    Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489–1492.CrossRefGoogle Scholar
  22. [22]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  23. [23]
    Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324–3334.CrossRefGoogle Scholar
  24. [24]
    Kapolnek, D.; Wu, X. H.; Heying, B.; Keller, S.; Keller, B. P.; Mishra, U. K.; DenBaars, S. P.; Speck, J. S. Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire. Appl. Phys. Lett. 1995, 67, 1541–1543.CrossRefGoogle Scholar
  25. [25]
    Yu, Y. F.; Li, C.; Liu, Y.; Su, L. Q.; Zhang, Y.; Cao, L. Y. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 2013, 3, 1866.CrossRefGoogle Scholar
  26. [26]
    Gao, Y.; Liu, Z. B.; Sun, D.-M.; Huang, L.; Ma, L.-P.; Yin, L.-C.; Ma, T.; Zhang, Z.; Ma, X.-L.; Peng, L.-M. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 8569.CrossRefGoogle Scholar
  27. [27]
    Yun, S. J.; Chae, S. H.; Kim, H.; Park, J. C.; Park, J.-H.; Han, G. H.; Lee, J. S.; Kim, S. M.; Oh, H. M.; Seok, J. et al. Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. ACS Nano 2015, 9, 5510–5519.CrossRefGoogle Scholar
  28. [28]
    Peimyoo, N.; Shang, J. Z.; Cong, C. X.; Shen, X. N.; Wu, X. Y.; Yeow, E. K. L.; Yu, T. Nonblinking, intense two-dimensional light emitter: Monolayer WS2 triangles. ACS Nano 2013, 7, 10985–10994.CrossRefGoogle Scholar
  29. [29]
    Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963–8971.CrossRefGoogle Scholar
  30. [30]
    Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Optical Mater. 2014, 2, 131–136.CrossRefGoogle Scholar
  31. [31]
    Li, S. S.; Wang, S. F.; Tang, D.-M.; Zhao, W. J.; Xu, H. L.; Chu, L. Q.; Bando, Y.; Golberg, D.; Eda, G. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 2015, 1, 60–66.CrossRefGoogle Scholar
  32. [32]
    Lan, C. Y.; Li, C.; Yin, Y.; Liu, Y. Large-area synthesis of monolayer WS2 and its ambient-sensitive photo-detecting performance. Nanoscale 2015, 7, 5974–5980.CrossRefGoogle Scholar
  33. [33]
    Jiang, X. C.; Xiong, Q. H.; Nam, S.; Qian, F.; Li, Y.; Lieber, C. M. InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 2007, 7, 3214–3218.CrossRefGoogle Scholar
  34. [34]
    Ford, A. C.; Ho, J. C.; Fan, Z. Y.; Ergen, O.; Altoe, V.; Aloni, S.; Razavi, H.; Javey, A. Synthesis, contact printing, and device characterization of Ni-catalyzed, crystalline InAs nanowires. Nano Res. 2008, 1, 32–39.CrossRefGoogle Scholar
  35. [35]
    Gurarslan, A.; Yu, Y. F.; Su, L. Q.; Yu, Y. L.; Suarez, F.; Yao, S. S.; Zhu, Y.; Ozturk, M.; Zhang, Y.; Cao, L. Y. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 2014, 8, 11522–11528.CrossRefGoogle Scholar
  36. [36]
    Benameur, M. M.; Radisavljevic, B.; Héron, J. S.; Sahoo, S.; Berger, H.; Kis, A. Visibility of dichalcogenide nanolayers. Nanotechnology 2011, 22, 125706.CrossRefGoogle Scholar
  37. [37]
    Zhang, X.; Qiao, X.-F.; Shi, W.; Wu, J.-B.; Jiang, D.-S.; Tan, P.-H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.CrossRefGoogle Scholar
  38. [38]
    McCreary, K. M.; Hanbicki, A. T.; Singh, S.; Kawakami, R. K.; Jernigan, G. G.; Ishigami, M.; Ng, A.; Brintlinger, T. H.; Stroud, R. M.; Jonker, B. T. The effect of preparation conditions on Raman and photoluminescence of monolayer WS2. Sci. Rep. 2016, 6, 35154.CrossRefGoogle Scholar
  39. [39]
    Peimyoo, N.; Shang, J. Z.; Yang, W. H.; Wang, Y. L.; Cong, C. X.; Yu, T. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy. Nano Res. 2015, 8, 1210–1221.CrossRefGoogle Scholar
  40. [40]
    Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.CrossRefGoogle Scholar
  41. [41]
    Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P.-H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797.CrossRefGoogle Scholar
  42. [42]
    Su, L. Q.; Yu, Y. F.; Cao, L. Y.; Zhang, Y. Effects of substrate type and material-substrate bonding on hightemperature behavior of monolayer WS2. Nano Res. 2015, 8, 2686–2697.CrossRefGoogle Scholar
  43. [43]
    Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y. M.; Dai, H. J. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 2003, 3, 193–198.CrossRefGoogle Scholar
  44. [44]
    Park, Y.; Baac, H. W.; Heo, J.; Yoo, G. Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors. Appl. Phys. Lett. 2016, 108, 083102.CrossRefGoogle Scholar
  45. [45]
    Qiu, H.; Pan, L. J.; Yao, Z. N.; Li, J. J.; Shi, Y.; Wang, X. R. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 2012, 100, 123104.CrossRefGoogle Scholar
  46. [46]
    Ghatak, S.; Pal, A. N.; Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 2011, 5, 7707–7712.CrossRefGoogle Scholar
  47. [47]
    Li, S.-L.; Wakabayashi, K.; Xu, Y.; Nakaharai, S.; Komatsu, K.; Li, W.-W.; Lin, Y.-F.; Aparecido-Ferreira, A.; Tsukagoshi, K. Thickness-dependent interfacial coulomb scattering in atomically thin field-effect transistors. Nano Lett. 2013, 13, 3546–3552.CrossRefGoogle Scholar
  48. [48]
    Lee, Y.; Lee, J.; Bark, H.; Oh, I.-K.; Ryu, G. H.; Lee, Z.; Kim, H.; Cho, J. H.; Ahn, J.-H.; Lee, C. Synthesis of waferscale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. Nanoscale 2014, 6, 2821–2826.CrossRefGoogle Scholar
  49. [49]
    Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.CrossRefGoogle Scholar
  50. [50]
    Liu, K.-K.; Zhang, W. J.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.CrossRefGoogle Scholar
  51. [51]
    Perea-López, N.; Elías, A. L.; Berkdemir, A.; Castro- Beltran, A.; Gutiérrez, H. R.; Feng, S. M.; Lv, R. T.; Hayashi, T.; López-Urías, F.; Ghosh, S. et al. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 2013, 23, 5511–5517.CrossRefGoogle Scholar
  52. [52]
    Pawbake, A. S.; Waykar, R. G.; Late, D. J.; Jadkar, S. R. Highly transparent wafer-scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humiditysensing applications. ACS Appl. Mater. Interfaces 2016, 8, 3359–3365.CrossRefGoogle Scholar
  53. [53]
    Yao, J. D.; Zheng, Z. Q.; Shao, J. M.; Yang, G. W. Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition. Nanoscale 2015, 7, 14974–14981.CrossRefGoogle Scholar
  54. [54]
    Guo, N.; Hu, W. D.; Liao, L.; Yip, S.; Ho, J. C.; Miao, J. S.; Zhang, Z.; Zou, J.; Jiang, T.; Wu, S. W. et al. Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature. Adv. Mater. 2014, 26, 8203–8209.CrossRefGoogle Scholar
  55. [55]
    Lan, C. Y.; Li, C.; Yin, Y.; Guo, H. Y.; Wang, S. Synthesis of single-crystalline GeS nanoribbons for high sensitivity visible-light photodetectors. J. Mater. Chem. C 2015, 3, 8074–8079.CrossRefGoogle Scholar
  56. [56]
    Lan, C. Y.; Li, C.; Wang, S.; He, T. Y.; Zhou, Z. F.; Wei, D. P.; Guo, H. Y.; Yang, H.; Liu, Y. Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures. J. Mater. Chem. C 2017, 5, 1494–1500.CrossRefGoogle Scholar
  57. [57]
    Binet, F.; Duboz, J. Y.; Rosencher, E.; Scholz, F.; Härle, V. Mechanisms of recombination in GaN photodetectors. Appl. Phys. Lett. 1996, 69, 1202–1204.CrossRefGoogle Scholar
  58. [58]
    Chen, R.-S.; Chen, H.-Y.; Lu, C.-Y.; Chen, K.-H.; Chen, C.-P.; Chen, L.-C.; Yang, Y.-J. Ultrahigh photocurrent gain in m-axial GaN nanowires. Appl. Phys. Lett. 2007, 91, 223106.CrossRefGoogle Scholar
  59. [59]
    Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y.-H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.CrossRefGoogle Scholar
  60. [60]
    Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B. et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649–1654.CrossRefGoogle Scholar
  61. [61]
    Jiang, Y.; Zhang, W. J.; Jie, J. S.; Meng, X. M.; Fan, X.; Lee, S. T. Photoresponse properties of CdSe single-nanoribbon photodetectors. Adv. Funct. Mater. 2007, 17, 1795–1800.CrossRefGoogle Scholar
  62. [62]
    Cunningham, G.; Khan, U.; Backes, C.; Hanlon, D.; McCloskey, D.; Donegan, J. F.; Coleman, J. N. Photoconductivity of solution-processed MoS2 films. J. Mater. Chem. C 2013, 1, 6899–6904.CrossRefGoogle Scholar
  63. [63]
    Zhou, X.; Zhang, Q.; Gan, L.; Li, H. Q.; Zhai, T. Y. Large-size growth of ultrathin SnS2 nanosheets and high performance for phototransistors. Adv. Funct. Mater. 2016, 26, 4405–4413.CrossRefGoogle Scholar
  64. [64]
    Zhou, Y. B.; Nie, Y. F.; Liu, Y. J.; Yan, K.; Hong, J. H.; Jin, C. H.; Zhou, Y.; Yin, J. B.; Liu, Z. F.; Peng, H. L. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano 2014, 8, 1485–1490.CrossRefGoogle Scholar
  65. [65]
    Zheng, Z. Q.; Zhang, T. M.; Yao, J. D.; Zhang, Y.; Xu, J. R.; Yang, G. W. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology 2016, 27, 225501.CrossRefGoogle Scholar
  66. [66]
    Ghorbani-Asl, M.; Borini, S.; Kuc, A.; Heine, T. Straindependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B 2013, 87, 235434.CrossRefGoogle Scholar
  67. [67]
    Wang, Y. L.; Cong, C. X.; Yang, W. H.; Shang, J. Z.; Peimyoo, N.; Chen, Y.; Kang, J. Y.; Wang, J. P.; Huang, W.; Yu, T. Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562–2572.CrossRefGoogle Scholar
  68. [68]
    De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K. et al. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 2016, 10, 8252–8262.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Changyong Lan
    • 1
    • 2
  • Ziyao Zhou
    • 1
    • 3
  • Zhifei Zhou
    • 2
  • Chun Li
    • 2
  • Lei Shu
    • 1
    • 3
  • Lifan Shen
    • 3
    • 4
  • Dapan Li
    • 1
    • 3
  • Ruoting Dong
    • 1
  • SenPo Yip
    • 1
    • 3
    • 4
  • Johnny C. Ho
    • 1
    • 3
    • 4
    • 5
    Email author
  1. 1.Department of Materials Science and EngineeringCity University of Hong KongHong KongChina
  2. 2.School of Optoelectronic InformationUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.Shenzhen Research InstituteCity University of Hong KongShenzhenChina
  4. 4.State Key Laboratory of Millimeter WavesCity University of Hong KongKowloon, Hong KongChina
  5. 5.Centre for Functional PhotonicsCity University of Hong KongKowloon, Hong KongChina

Personalised recommendations