Advertisement

Nano Research

, Volume 11, Issue 5, pp 2862–2871 | Cite as

Ultra-robust triboelectric nanogenerator for harvesting rotary mechanical energy

  • Xinyu Du
  • Nianwu Li
  • Yuebo Liu
  • Jiaona Wang
  • Zuqing Yuan
  • Yingying Yin
  • Ran Cao
  • Shuyu Zhao
  • Bin Wang
  • Zhong Lin Wang
  • Congju LiEmail author
Research Article

Abstract

Triboelectric nanogenerators (TENGs) for harvesting rotary mechanical energy are mostly based on in-plane sliding or free-standing mode. However, the relative displacement between two contacting triboelectric layers causes abrasion, which lowers the output power and reduces service life. Therefore, it is important to develop a method to minimize abrasion when harvesting rotary mechanical energy. Here, we report a scale-like structured TENG (SL-TENG), in which two triboelectric layers work under a contact-separation mode to avoid in-plane relative sliding in order to minimize abrasion. As a result, the SL-TENG exhibits outstanding robustness. For example, the output voltage of the SL-TENG does not exhibit any measurable decay although this output has been continuously generated through more than a million cycles. Moreover, at a very low rotation rate of 120 rpm, the SL-TENG can generate a maximum short-circuit current of 78 μA, delivering an instantaneous power density of 2.54 W/m2 to an external load. In relation to this, a Li-ion battery was charged using the SL-TENG. After a 30-min charging time, the battery achieved a discharge capacity of 0.1 mAh. Through a power management circuit integrated into the SL-TENG, a continuous direct current (DC) of 5 V is outputted, providing sufficient DC power for driving a radio-frequency wireless sensor and other conventional electronics.

Keywords

nanogenerator ultra-robust energy harvesting rotary motions scale-like structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We wish to thank Tao Zhou and Jinxi Zhang for stimulating discussions, and Hongtao Yuan, Jianqiang Fu and Chaoying Zhang for assistance on characterization measurements. This work is supported by the National Key R&D Project from the Minister of Science and Technology, China (Nos. 2016YFA0202702, 2016YFA0202703, and 2016YFA0202704) and the National Natural Science Foundation of China (Nos. 21703010, 21274006 and 51503005), the Programs for Beijing Science and Technology Leading Talent (No. Z16111000490000).

Supplementary material

12274_2017_1916_MOESM1_ESM.pdf (1.9 mb)
Ultra-robust triboelectric nanogenerator for harvesting rotary mechanical energy

Supplementary material, approximately 1.31 MB.

12274_2017_1916_MOESM3_ESM.avi (4.9 mb)
Supplementary material, approximately 4.94 MB.
12274_2017_1916_MOESM4_ESM.avi (5 mb)
Supplementary material, approximately 4.99 MB.

References

  1. [1]
    Wang, Z. L.Catch wave power in floating nets. Nature 2017, 542, 159–160.CrossRefGoogle Scholar
  2. [2]
    Herbert, G. M. J.; Iniyan, S.; Sreevalsan, E.; Rajapandian, S. A review of wind energy technologies. Renewable Sustainable Energy Rev. 2007, 11, 1117–1145.CrossRefGoogle Scholar
  3. [3]
    Ackermann, T.; Söder, L. Wind energy technology and current status: A review. Renewable Sustainable Energy Rev. 2000, 4, 315–374.CrossRefGoogle Scholar
  4. [4]
    Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.CrossRefGoogle Scholar
  5. [5]
    Chen, J.; Yang, J.; Li, Z. L.; Fan, X.; Zi, Y. L.; Jing, Q. S.; Guo, H. Y.; Wen, Z.; Pradel, K. C.; Niu, S. M. et al. Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy. ACS Nano 2015, 9, 3324–3331.CrossRefGoogle Scholar
  6. [6]
    Bae, J.; Lee, J.; Kim, S.; Ha, J.; Lee, B.-S.; Park, Y.; Choong, C.; Kim, J.-B.; Wang, Z. L.; Kim, H.-Y. et al. Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 2014, 5, 4929.CrossRefGoogle Scholar
  7. [7]
    Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M.-H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 2016, 10, 4797–4805.CrossRefGoogle Scholar
  8. [8]
    Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.CrossRefGoogle Scholar
  9. [9]
    Zhu, G.; Lin, Z.-H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.CrossRefGoogle Scholar
  10. [10]
    Zhang, X.-S.; Han, M.-D.; Wang, R.-X.; Zhu, F.-Y.; Li, Z.-H.; Wang, W.; Zhang, H.-X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168–1172.CrossRefGoogle Scholar
  11. [11]
    Bai, P.; Zhu, G.; Lin, Z.-H.; Jing, Q. S.; Chen, J.; Zhang, G.; Ma, J. S.; Wang, Z. L. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 2013, 7, 3713–3719.CrossRefGoogle Scholar
  12. [12]
    Chen, J.; Zhu, G.; Yang, W. Q.; Jing, Q. S.; Bai, P.; Yang, Y.; Hou, T.-C.; Wang, Z. L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094–6099.CrossRefGoogle Scholar
  13. [13]
    Ahmed, A.; Hassan, I.; Ibn-Mohammed, T.; Mostafa, H.; Reaney, I. M.; Koh, L. S. C.; Zu, J.; Wang, Z. L. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy Environ. Sci. 2017, 10, 653–671.CrossRefGoogle Scholar
  14. [14]
    Fan, F.-R.; Tian, Z.-Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.CrossRefGoogle Scholar
  15. [15]
    Luo, J. J.; Tang, W.; Fan, F. R.; Liu, C. F.; Pang, Y. K.; Cao, G. Z.; Wang, Z. L. Transparent and flexible self-charging power film and its application in a sliding unlock system in touchpad technology. ACS Nano 2016, 10, 8078–8086.CrossRefGoogle Scholar
  16. [16]
    Jing, Q. S.; Xie, Y. N.; Zhu, G.; Han, R. P. S.; Wang, Z. L. Self-powered thin-film motion vector sensor. Nat. Commun. 2015, 6, 8031.CrossRefGoogle Scholar
  17. [17]
    Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2012, 24, 280–285.CrossRefGoogle Scholar
  18. [18]
    Yang, Y.; Zhang, H. L.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342–7351.CrossRefGoogle Scholar
  19. [19]
    Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.CrossRefGoogle Scholar
  20. [20]
    Chen, S. W.; Wang, N.; Ma, L.; Li, T.; Willander, M.; Jie, Y.; Cao, X.; Wang, Z. L. Triboelectric nanogenerator for sustainable wastewater treatment via a self-powered electrochemical process. Adv. Energy Mater. 2016, 6, 1501778.CrossRefGoogle Scholar
  21. [21]
    Tang, W.; Han, Y.; Han, C. B.; Gao, C. Z.; Cao, X.; Wang, Z. L. Self-powered water splitting using flowing kinetic energy. Adv. Mater. 2015, 27, 272–276.CrossRefGoogle Scholar
  22. [22]
    Li, A. Y.; Zi, Y. L.; Guo, H. Y.; Wang, Z. L.; Fernandez, F. M. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nat. Nanotechnol. 2017, 12, 481–487.CrossRefGoogle Scholar
  23. [23]
    Chen, S. W.; Gao, C. Z.; Tang, W.; Zhu, H. R.; Han, Y.; Jiang, Q. W.; Li, T.; Cao, X.; Wang, Z. L. Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 2015, 14, 217–225.CrossRefGoogle Scholar
  24. [24]
    Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C.-Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.CrossRefGoogle Scholar
  25. [25]
    Niu, S. M.; Wang, X. F.; Yi, F.; Zhou, Y. S.; Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975.CrossRefGoogle Scholar
  26. [26]
    Chun, J.; Ye, B. U.; Lee, J. W.; Choi, D.; Kang, C.-Y.; Kim, S.-W.; Wang, Z. L.; Baik, J. M. Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nat. Commun. 2016, 7, 12985.CrossRefGoogle Scholar
  27. [27]
    Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectriceffect- enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.CrossRefGoogle Scholar
  28. [28]
    Chen, J.; Zhu, G.; Yang, J.; Jing, Q. S.; Bai, P.; Yang, W. Q.; Qi, X. W.; Su, Y. J.; Wang, Z. L. Personalized keystroke dynamics for self-powered human-machine interfacing. ACS Nano 2015, 9, 105–116.CrossRefGoogle Scholar
  29. [29]
    Wen, Z.; Chen, J.; Yeh, M.-H.; Guo, H. Y.; Li, Z. L.; Fan, X.; Zhang, T. J.; Zhu, L. P.; Wang, Z. L. Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 2015, 16, 38–46.CrossRefGoogle Scholar
  30. [30]
    Pu, X.; Liu, M. M.; Li, L. X.; Zhang, C.; Pang, Y. K.; Jiang, C. Y.; Shao, L. H.; Hu, W. G.; Wang, Z. L. Efficient charging of Li-ion batteries with pulsed output current of triboelectric nanogenerators. Adv. Sci. 2016, 3, 1500255.CrossRefGoogle Scholar
  31. [31]
    Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.Google Scholar
  32. [32]
    Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z.-H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119–7125.CrossRefGoogle Scholar
  33. [33]
    Zhang, C.; Tang, W.; Pang, Y.; Han, C. B.; Wang, Z. L. Active micro-actuators for optical modulation based on a planar sliding triboelectric nanogenerator. Adv. Mater. 2015, 27, 719–726.CrossRefGoogle Scholar
  34. [34]
    Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.CrossRefGoogle Scholar
  35. [35]
    Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.CrossRefGoogle Scholar
  36. [36]
    Chen, J.; Yang, J.; Guo, H. Y.; Li, Z. L.; Zheng, L.; Su, Y. J.; Wen, Z.; Fan, X.; Wang, Z. L. Automatic mode transition enabled robust triboelectric nanogenerators. ACS Nano 2015, 9, 12334–12343.CrossRefGoogle Scholar
  37. [37]
    Fang, H.; Wu, W. Z.; Song, J. H.; Wang, Z. L. Controlled growth of aligned polymer nanowires. J. Phys. Chem. C 2009, 113, 16571–16574.CrossRefGoogle Scholar
  38. [38]
    Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Liu, C.; Zhou, Y. S.; Wang, Z. L. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 2014, 26, 6720–6728.CrossRefGoogle Scholar
  39. [39]
    Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.CrossRefGoogle Scholar
  40. [40]
    Zi, Y. L.; Wang, J.; Wang, S. H.; Li, S. M.; Wen, Z.; Guo, H. Y.; Wang, Z. L. Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 2016, 7, 10987.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Xinyu Du
    • 1
  • Nianwu Li
    • 1
  • Yuebo Liu
    • 2
  • Jiaona Wang
    • 2
  • Zuqing Yuan
    • 1
    • 4
  • Yingying Yin
    • 1
    • 4
  • Ran Cao
    • 1
    • 4
  • Shuyu Zhao
    • 2
  • Bin Wang
    • 2
  • Zhong Lin Wang
    • 1
    • 3
    • 4
  • Congju Li
    • 1
    Email author
  1. 1.Beijing Institute of Nanoenergy and NanosystemsChinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST)BeijingChina
  2. 2.School of Materials Science & EngineeringBeijing Institute of Fashion TechnologyBeijingChina
  3. 3.School of Material Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations