Advertisement

Nano Research

, Volume 11, Issue 5, pp 2605–2611 | Cite as

Unraveling giant Cu(110) surface restructuring induced by a non-planar phthalocyanine

  • Nataliya Kalashnyk
  • Luke A. Rochford
  • Dongzhe Li
  • Alexander Smogunov
  • Yannick J. Dappe
  • Tim S. Jones
  • Laurent Guillemot
Research Article
  • 94 Downloads

Abstract

The surface stability of coinage metals is paramount when they are used as electrode materials for functional electronic devices incorporating organic semiconductors. In this work, it is shown that the adsorption of non-planar vanadyl phthalocyanine molecules on Cu(110) drastically restructured the metal surface at room temperature, which was further enhanced upon moderate annealing. Scanning tunneling microscopy imaging demonstrated that the surface was restructured at step edges into sawtooth features that gradually replaced the (110) terraces. The edges of the modified steps were preferentially composed of chiral (1×6) kink sites decorated with vanadyl phthalocyanine molecules adsorbed in a tilted configuration with the oxygen atom pointing downwards. These results can have a strong impact on the optimization of the performance of organic devices integrated with phthalocyanine molecules.

Keywords

surface restructuring step-etching chiral kink phthalocyanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1887_MOESM1_ESM.pdf (1 mb)
Unraveling giant Cu(110) surface restructuring induced by a non-planar phthalocyanine

References

  1. [1]
    Sorokin, A. B. Phthalocyanine metal complexes in catalysis. Chem. Rev. 2013, 113, 8152–8191.CrossRefGoogle Scholar
  2. [2]
    Bohrer, F. I.; Colesniuc, C. N.; Park, J.; Ruidiaz, M. E.; Schuller, I. K.; Kummel, A. C.; Trogler, W. C. Comparative gas sensing in cobalt, nickel, copper, zinc, and metal-free phthalocyanine chemiresistors. J. Am. Chem. Soc. 2009, 131, 478–485.CrossRefGoogle Scholar
  3. [3]
    Tao, N. J. Molecular switches: Pushing the right button. Nat. Chem. 2009, 1, 108–109.CrossRefGoogle Scholar
  4. [4]
    Iacovita, C.; Rastei, M. V.; Heinrich, B. W.; Brumme, T.; Kortus, J.; Limot, L.; Bucher, J. P. Visualizing the spin of individual cobalt-phthalocyanine molecules. Phys. Rev. Lett. 2008, 101, 116602.CrossRefGoogle Scholar
  5. [5]
    Walter, M. G.; Rudine, A. B.; Wamser, C. C. Porphyrins and phthalocyanines in solar photovoltaic cells. J. Porphyrins Phthalocyanines 2010, 14, 759–792.CrossRefGoogle Scholar
  6. [6]
    Kuder, J. E. Organic active layer materials for optical recording. J. Imaging Sci. 1988, 32, 51–56.Google Scholar
  7. [7]
    Amin, B.; Nazir, S.; Schwingenschlögl, U. Molecular distortion and charge transfer effects in ZnPc/Cu(111). Sci. Rep. 2013, 3, 1705.CrossRefGoogle Scholar
  8. [8]
    Zhao, A. D.; Li, Q. X.; Chen, L.; Xiang, H. J.; Wang, W. H.; Pan, S.; Wang, B.; Xiao, X. D.; Yang, J. L.; Hou, J. G. et al. Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 2005, 309, 1542–1544.CrossRefGoogle Scholar
  9. [9]
    Chang, S.-H.; Kuck, S.; Brede, J.; Lichtenstein, L.; Hoffmann, G.; Wiesendanger, R. Symmetry reduction of metal phthalocyanines on metals. Phys. Rev. B 2008, 78, 233409.CrossRefGoogle Scholar
  10. [10]
    Niu, T. C.; Zhang, J. L.; Chen, W. Molecular ordering and dipole alignment of vanadyl phthalocyanine monolayer on metals: The effects of interfacial interactions. J. Phys. Chem. C 2014, 118, 4151–4159.CrossRefGoogle Scholar
  11. [11]
    Niu, T. C.; Zhou, C. G.; Zhang, J. L.; Zhong, S.; Cheng, H. S.; Chen, W. Substrate reconstruction mediated unidirectionally aligned molecular dipole dot arrays. J. Phys. Chem. C 2012, 116, 11565–11569.CrossRefGoogle Scholar
  12. [12]
    Rochford, L. A.; Hancox, I.; Jones, T. S. Understanding domain symmetry in vanadium oxide phthalocyanine monolayers on Au (111). Surf. Sci. 2014, 628, 62–65.CrossRefGoogle Scholar
  13. [13]
    Niu, T. C.; Zhou, M.; Zhang, J. L.; Feng, Y. P.; Chen, W. Dipole orientation dependent symmetry reduction of chloroaluminum phthalocyanine on Cu(111). J. Phys. Chem. C 2013, 117, 1013–1019.CrossRefGoogle Scholar
  14. [14]
    Huang, Y. L.; Wang, R.; Niu, T. C.; Kera, S.; Ueno, N.; Pflaum, J.; Wee, A. T. S.; Chen, W. One dimensional molecular dipole chain arrays on graphite via nanoscale phase separation. Chem. Commun. 2010, 46, 9040–9042.CrossRefGoogle Scholar
  15. [15]
    Chen, Q.; Richardson, N. V. Surface facetting induced by adsorbates. Prog. Surf. Sci. 2003, 73, 59–77.CrossRefGoogle Scholar
  16. [16]
    Xiao, W. D.; Ernst, K.-H.; Palotas, K.; Zhang, Y. Y.; Bruyer, E.; Peng, L. Q.; Greber, T.; Hofer, W. A.; Scott, L. T.; Fasel, R. Microscopic origin of chiral shape induction in achiral crystals. Nat. Chem. 2016, 8, 326–330.CrossRefGoogle Scholar
  17. [17]
    Pascual, J. I.; Barth, J. V.; Ceballos, G.; Trimarchi, G.; De Vita, A.; Kern, K.; Rust, H.-P. Mesoscopic chiral reshaping of the Ag(110) surface induced by the organic molecule PVBA. J. Chem. Phys. 2004, 120, 11367–11370.CrossRefGoogle Scholar
  18. [18]
    Rosei, F.; Schunack, M.; Jiang, P.; Gourdon, A.; Lægsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Organic molecules acting as templates on metal surfaces. Science 2002, 296, 328–331.CrossRefGoogle Scholar
  19. [19]
    Gross, L.; Rieder, K.-H.; Moresco, F.; Stojkovic, S. M.; Gourdon, A.; Joachim, C. Trapping and moving metal atoms with a six-leg molecule. Nat. Mater. 2005, 4, 892–895.CrossRefGoogle Scholar
  20. [20]
    Abadía, M.; González-Moreno, R.; Sarasola, A.; Otero-Irurueta, G.; Verdini, A.; Floreano, L.; Garcia-Lekue, A.; Rogero, C. Massive surface reshaping mediated by metal–organic complexes. J. Phys. Chem. C 2014, 118, 29704–29712.CrossRefGoogle Scholar
  21. [21]
    Cossaro, A.; Cvetko, D.; Bavdek, G.; Floreano, L.; Gotter, R.; Morgante, A.; Evangelista, F.; Ruocco, A. Copperphthalocyanine induced reconstruction of Au(110). J. Phys. Chem. B 2004, 108, 14671–14676.CrossRefGoogle Scholar
  22. [22]
    Floreano, L.; Cossaro, A.; Gotter, R.; Verdini, A.; Bavdek, G.; Evangelista, F.; Ruocco, A.; Morgante, A.; Cvetko, D. Periodic arrays of Cu-phthalocyanine chains on Au(110). J. Phys. Chem. C 2008, 112, 10794–10802.CrossRefGoogle Scholar
  23. [23]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  24. [24]
    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. Quantum ESPRESSO: A modular and opensource software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.CrossRefGoogle Scholar
  25. [25]
    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.CrossRefGoogle Scholar
  26. [26]
    Ahmadi, A.; Attard, G.; Feliu, J.; Rodes, A. Surface reactivity at “chiral” platinum surfaces. Langmuir 1999, 15, 2420–2424.CrossRefGoogle Scholar
  27. [27]
    Van Hove, M. A.; Somorjai, G. A. A new microfacet notation for high-miller-index surfaces of cubic materials with terrace, step and kink structures. Surf. Sci. 1980, 92, 489–518.CrossRefGoogle Scholar
  28. [28]
    Kalashnyk, N.; Yu, M.; Barattin, R.; Benjalal, Y.; Hliwa, M.; Joachim, C.; Lægsgaard, E.; Besenbacher, F.; Gourdon, A.; Bouju, X. et al. Bicomponent hydrogen-bonded nanostructures formed by two complementary molecular Landers on Au(111). Chem. Commun. 2014, 50, 10619–10621.CrossRefGoogle Scholar
  29. [29]
    Ren, J.; Meng, S.; Wang, Y.-L.; Ma, X.-C.; Xue, Q.-K.; Kaxiras, E. Properties of copper (fluoro-)phthalocyanine layers deposited on epitaxial graphene. J. Chem. Phys. 2011, 134, 194706.CrossRefGoogle Scholar
  30. [30]
    Coulman, D. J.; Wintterlin, J.; Behm, R. J.; Ertl, G. Novel mechanism for the formation of chemisorption phases: The (2×1)O–Cu(110) “added row” reconstruction. Phys. Rev. Lett. 1990, 64, 1761–1764.CrossRefGoogle Scholar
  31. [31]
    Guillemot, L.; Bobrov, K. Morphological instability of the Cu(110)–(2×1)–O surface under thermal annealing. Phys. Rev. B 2011, 83, 075409.CrossRefGoogle Scholar
  32. [32]
    Witte, G.; Hänel, K.; Busse, C.; Birkner, A.; Wöll, C. Molecules coining patterns into a metal: The hard core of soft matter. Chem. Mater. 2007, 19, 4228–4233.CrossRefGoogle Scholar
  33. [33]
    Hansen, L.; Stoltze, P.; Jacobsen, K. W.; Nørskov, J. K. Self-diffusion on copper surfaces. Phys. Rev. B 1991, 44, 6523–6526.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Nataliya Kalashnyk
    • 1
  • Luke A. Rochford
    • 2
  • Dongzhe Li
    • 3
  • Alexander Smogunov
    • 4
  • Yannick J. Dappe
    • 4
  • Tim S. Jones
    • 2
  • Laurent Guillemot
    • 1
  1. 1.Institut des Sciences Moléculaires d’OrsayCNRSOrsayFrance
  2. 2.School of ChemistryThe University of BirminghamBirminghamUK
  3. 3.Department of PhysicsUniversity of KonstanzKonstanzGermany
  4. 4.SPEC, CEA, CNRSUniversité Paris-Saclay, CEA SaclayGif-sur-Yvette CedexFrance

Personalised recommendations