Advertisement

Nano Research

, Volume 11, Issue 8, pp 3959–3971 | Cite as

Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution

  • Huajie Yin
  • Lixue Jiang
  • Porun Liu
  • Mohammad Al-Mamun
  • Yun Wang
  • Yu Lin Zhong
  • Huagui Yang
  • Dan Wang
  • Zhiyong Tang
  • Huijun ZhaoEmail author
Research Article

Abstract

The development of a facile method to construct a high-performance electrode is of paramount importance to the application of alkaline water electrolysis. Here, we report that the activity of nickel foam (NF) towards the oxygen evolution reaction (OER) can be enhanced remarkably through simple immersion in a ferric nitrate (Fe(NO3)3) solution at room temperature. During this immersion process, the oxidation of the NF surface by NO3 ions increases the near-surface concentrations of OH and Ni2+, which results in the in situ deposition of a highly active amorphous Ni-Fe hydroxide (a-NiFeOxHy) layer. Specifically, the OER overpotential of the NF electrode decreases from 371 mV (bare NF) to 270 mV (@10 mA·cm−2 in 0.1 M KOH) after immersion in a 20 mM Fe(NO3)3 solution for just 1 min. A longer immersion time results in further increased OER activity (196 mV@10 mA·cm−2 in 1 M KOH). The overall water splitting properties of the a-NiFeOxHy@NF electrode were evaluated using a two-electrode configuration. It is worth noting that the current density can reach 25 mA·cm−2 in 6 M KOH at an applied voltage of 1.5 V at room temperature.

Keywords

oxygen evolution reaction water electrolysis corrosion hydroxide nickel foam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the Australian Research Council (ARC) Discovery Project, the National Natural Science Foundation of China (Nos. 51372248 and 51432009) and Griffith University New Researcher Grant (NRG).

Supplementary material

12274_2017_1886_MOESM1_ESM.pdf (13.8 mb)
Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution

Supplementary material, approximately 2.08 MB.

References

  1. [1]
    Zeng, K.; Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326.CrossRefGoogle Scholar
  2. [2]
    Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.CrossRefGoogle Scholar
  3. [3]
    Gu, S.; Xu, B. J.; Yan, Y. S. Electrochemical energy engineering: A new frontier of chemical engineering innovation. Annu. Rev. Chem. Biomol. Eng. 2014, 5, 429–454.CrossRefGoogle Scholar
  4. [4]
    Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593–1596.CrossRefGoogle Scholar
  5. [5]
    Abdin, Z.; Webb, C. J.; Gray, E. M. Solar hydrogen hybrid energy systems for off-grid electricity supply: A critical review. Renew. Sustain. Energy Rev. 2015, 52, 1791–1808.CrossRefGoogle Scholar
  6. [6]
    Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57–69.CrossRefGoogle Scholar
  7. [7]
    Rossmeisl, J.; Qu, Z.-W.; Zhu, H.; Kroes, G.-J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.CrossRefGoogle Scholar
  8. [8]
    Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.CrossRefGoogle Scholar
  9. [9]
    Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63.CrossRefGoogle Scholar
  10. [10]
    Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. et al. Homogeneously dispersed multimetal oxygenevolving catalysts. Science 2016, 352, 333–337.CrossRefGoogle Scholar
  11. [11]
    Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C.-T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.CrossRefGoogle Scholar
  12. [12]
    Kanan, M. W.; Nocera, D. G. In situ formation of an oxygenevolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.CrossRefGoogle Scholar
  13. [13]
    Chen, D. J.; Chen, C.; Baiyee, Z. M.; Shao, Z. P.; Ciucci, F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 2015, 115, 9869–9921.CrossRefGoogle Scholar
  14. [14]
    Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 2015, 8, 1404–1427.CrossRefGoogle Scholar
  15. [15]
    Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S. H.; Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles. Chem. Mater. 2015, 27, 7549–7558.CrossRefGoogle Scholar
  16. [16]
    Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.CrossRefGoogle Scholar
  17. [17]
    McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.CrossRefGoogle Scholar
  18. [18]
    Han, L.; Dong, S. J.; Wang, E. K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266–9291.CrossRefGoogle Scholar
  19. [19]
    Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.CrossRefGoogle Scholar
  20. [20]
    Beni, G.; Schiavone, L. M.; Shay, J. L.; Dautremont-Smith, W. C.; Schneider, B. S. Electrocatalytic oxygen evolution on reactively sputtered electrochromic iridium oxide films. Nature 1979, 282, 281–283.CrossRefGoogle Scholar
  21. [21]
    Wang, W. J.; Li, H. L.; Kang, G. H.; Huang, J. Z.; Xu, Z. Detailed analysis of factors to influence the electrochemical behaviors of Fe:NiOxFe:NiOx films fabricated by magnetron sputtering technology. Int. J. Hydrogen Energy 2006, 31, 1791–1796.CrossRefGoogle Scholar
  22. [22]
    Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.CrossRefGoogle Scholar
  23. [23]
    Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.CrossRefGoogle Scholar
  24. [24]
    Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Trudel, S.; Berlinguette, C. P. Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 2013, 135, 11580–11586.CrossRefGoogle Scholar
  25. [25]
    Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 2013, 4, 2390.CrossRefGoogle Scholar
  26. [26]
    Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.CrossRefGoogle Scholar
  27. [27]
    Hunter, B. M.; Blakemore, J. D.; Deimund, M.; Gray, H. B.; Winkler, J. R.; Müller, A. M. Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids. J. Am. Chem. Soc. 2014, 136, 13118–13121.CrossRefGoogle Scholar
  28. [28]
    Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.CrossRefGoogle Scholar
  29. [29]
    Song, F.; Schenk, K.; Hu, X. L. A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6 nanocubes. Energy Environ. Sci. 2016, 9, 473–477.CrossRefGoogle Scholar
  30. [30]
    Castro, E. B.; Gervasi, C. A. Electrodeposited Ni-Co-oxide electrodes: Characterization and kinetics of the oxygen evolution reaction. Int. J. Hydrogen Energy 2000, 25, 1163–1170.CrossRefGoogle Scholar
  31. [31]
    Chi, B.; Li, J. B.; Yang, X. Z.; Lin, H.; Wang, N. Electrophoretic deposition of ZnCo2O4 spinel and its electrocatalytic properties for oxygen evolution reaction. Electrochim. Acta 2005, 50, 2059–2064.CrossRefGoogle Scholar
  32. [32]
    Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.CrossRefGoogle Scholar
  33. [33]
    Louie, M. W.; Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.CrossRefGoogle Scholar
  34. [34]
    Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.CrossRefGoogle Scholar
  35. [35]
    Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.CrossRefGoogle Scholar
  36. [36]
    Ng, J. W. D.; García-Melchor, M.; Bajdich, M.; Chakthranont, P.; Kirk, C.; Vojvodic, A.; Jaramillo, T. F. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat. Energy 2016, 1, 16053.CrossRefGoogle Scholar
  37. [37]
    Li, Y. G.; Hasin, P.; Wu, Y. Y. NixCo3–xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 2010, 22, 1926–1929.CrossRefGoogle Scholar
  38. [38]
    Zhou, W. J.; Cao, X. H.; Zeng, Z. Y.; Shi, W. H.; Zhu, Y. Y.; Yan, Q. Y.; Liu, H.; Wang, J. Y.; Zhang, H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ. Sci. 2013, 6, 2216–2221.CrossRefGoogle Scholar
  39. [39]
    Wang, H.-Y.; Hsu, Y.-Y.; Chen, R.; Chan, T.-S.; Chen, H. M.; Liu, B. Ni3+-induced formation of active NiOOH on the spinel Ni-Co oxide surface for efficient oxygen evolution reaction. Adv. Energy Mater. 2015, 5, 1500091.CrossRefGoogle Scholar
  40. [40]
    Chen, S.; Duan, J. J.; Bian, P. J.; Tang, Y. H.; Zheng, R. K.; Qiao, S. Z. Three-dimensional smart catalyst electrode for oxygen evolution reaction. Adv. Energy Mater. 2015, 5, 1500936.CrossRefGoogle Scholar
  41. [41]
    Jiang, J.; Zhang, A. L.; Li, L. L.; Ai, L. H. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. J. Power Sources 2015, 278, 445–451.CrossRefGoogle Scholar
  42. [42]
    Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023–14026.CrossRefGoogle Scholar
  43. [43]
    Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.CrossRefGoogle Scholar
  44. [44]
    Li, S. W.; Wang, Y. C.; Peng, S. J.; Zhang, L. J.; Al-Enizi, A. M.; Zhang, H.; Sun, X. H.; Zheng, G. F. Co-Ni-based nanotubes/nanosheets as efficient water splitting electrocatalysts. Adv. Energy Mater. 2015, 6, 1501661.CrossRefGoogle Scholar
  45. [45]
    Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. FeOOH/Co/FeOOH hybrid nanotube arrays as highperformance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 3694–3698.CrossRefGoogle Scholar
  46. [46]
    Sun, T. T.; Xu, L. B.; Yan, Y. S.; Zakhidov, A. A.; Baughman, R. H.; Chen, J. F. Ordered mesoporous nickel sphere arrays for highly efficient electrocatalytic water oxidation. ACS Catal. 2016, 6, 1446–1450.CrossRefGoogle Scholar
  47. [47]
    Ahn, H. S.; Bard, A. J. Surface interrogation scanning electrochemical microscopy of Ni1–xFexOOH (0 < x < 0.27) oxygen evolving catalyst: Kinetics of the “fast” iron sites. J. Am. Chem. Soc. 2016, 138, 313–318.CrossRefGoogle Scholar
  48. [48]
    Diaz-Morales, O.; Ledezma-Yanez, I.; Koper, M. T. M.; Calle-Vallejo, F. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catal. 2015, 5, 5380–5387.CrossRefGoogle Scholar
  49. [49]
    Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M.-J.; Sokaras, D.; Weng, T.-C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.CrossRefGoogle Scholar
  50. [50]
    Michael, J. D.; Demeter, E. L.; Illes, S. M.; Fan, Q. Q.; Boes, J. R.; Kitchin, J. R. Alkaline electrolyte and Fe impurity effects on the performance and active-phase structure of NiOOH thin films for OER catalysis applications. J. Phys. Chem. C 2015, 119, 11475–11481.CrossRefGoogle Scholar
  51. [51]
    Trześniewski, B. J.; Diaz-Morales, O.; Vermaas, D. A.; Longo, A.; Bras, W.; Koper, M. T. M.; Smith, W. A. In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: The effect of pH on electrochemical activity. J. Am. Chem. Soc. 2015, 137, 15112–15121.CrossRefGoogle Scholar
  52. [52]
    Görlin, M.; Chernev, P.; Ferreira de Araújo, J.; Reier, T.; Dresp, S.; Paul, B.; Krähnert, R.; Dau, H.; Strasser, P. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 2016, 138, 5603–5614.CrossRefGoogle Scholar
  53. [53]
    Hunter, B. M.; Hieringer, W.; Winkler, J. R.; Gray, H. B.; Müller, A. M. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy Environ. Sci. 2016, 9, 1734–1743.CrossRefGoogle Scholar
  54. [54]
    Bard, A. J.; Parsons, R.; Jordan, J. Standard Potentials in Aqueous Solution; CRC Press: Boca Raton, FL, USA, 1985.Google Scholar
  55. [55]
    Flynn Jr, C. M. Hydrolysis of inorganic iron (III) salts. Chem. Rev. 1984, 84, 31–41.CrossRefGoogle Scholar
  56. [56]
    Li, Z. H.; Shao, M. F.; An, H. L.; Wang, Z. X.; Xu, S. M.; Wei, M.; Evans, D. G.; Duan, X. Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions. Chem. Sci. 2015, 6, 6624–6631.CrossRefGoogle Scholar
  57. [57]
    Lu, Z. Y.; Xu, W. W.; Zhu, W.; Yang, Q.; Lei, X. D.; Liu, J. F.; Li, Y. P.; Sun, X. M.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479–6482.CrossRefGoogle Scholar
  58. [58]
    Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574.CrossRefGoogle Scholar
  59. [59]
    van Veenendaal, M. A.; Sawatzky, G. A. Nonlocal screening effects in 2p X-ray photoemission spectroscopy core-level line shapes of transition metal compounds. Phys. Rev. Lett. 1993, 70, 2459–2462.CrossRefGoogle Scholar
  60. [60]
    McIntyre, N. S.; Zetaruk, D. G. X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 1977, 49, 1521–1529.CrossRefGoogle Scholar
  61. [61]
    Li, X.-Q.; Zhang, W.-X. Iron nanoparticles: The core–shell structure and unique properties for Ni(II) sequestration. Langmuir 2006, 22, 4638–4642.CrossRefGoogle Scholar
  62. [62]
    Oblonsky, L. J.; Devine, T. M. A surface enhanced Raman spectroscopic study of the passive films formed in borate buffer on iron, nickel, chromium and stainless steel. Corrosion Sci. 1995, 37, 17–41.CrossRefGoogle Scholar
  63. [63]
    Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 2013, 4, 1894.CrossRefGoogle Scholar
  64. [64]
    Bonin, P. M. L.; Jȩdral, W.; Odziemkowski, M. S.; Gillham, R. W. Electrochemical and Raman spectroscopic studies of the influence of chlorinated solvents on the corrosion behaviour of iron in borate buffer and in simulated groundwater. Corrosion Sci. 2000, 42, 1921–1939.CrossRefGoogle Scholar
  65. [65]
    Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.CrossRefGoogle Scholar
  66. [66]
    Stupnišek-Lisac, E.; Karšulin, M. Electrochemical behaviour of nickel in nitric acid. Electrochimica Acta 1984, 29, 1339–1343.CrossRefGoogle Scholar
  67. [67]
    El Haleem, S. M. A.; El Aal, E. E. A. Electrochemical behavior of nickel in HNO3 and the effect of chloride ions. J. Mater. Eng. Perform. 2004, 13, 784–792.CrossRefGoogle Scholar
  68. [68]
    McAteer, D.; Gholamvand, Z.; McEvoy, N.; Harvey, A.; O’Malley, E.; Duesberg, G. S.; Coleman, J. N. Thickness dependence and percolation scaling of hydrogen production rate in MoS2 nanosheet and nanosheet-carbon nanotube composite catalytic electrodes. ACS Nano 2015, 10, 672–683.CrossRefGoogle Scholar
  69. [69]
    Morales-Guio, C. G.; Liardet, L.; Hu, X. L. Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides as oxygen evolution catalysts. J. Am. Chem. Soc. 2016, 138, 8946–8957.CrossRefGoogle Scholar
  70. [70]
    Sato, N.; Okamoto, G. Electrochemical passivation of metals. In Electrochemical Materials Science; Bockris, J. O.; Conway, B. E.; Yeager, E.; White, R. E., Eds; Springer: Boston, MA, USA, 1981; pp 193–245.CrossRefGoogle Scholar
  71. [71]
    Blesa, M. A.; Matijević, E. Phase transformations of iron oxides, oxohydroxides, and hydrous oxides in aqueous media. Adv. Colloid Interface Sci. 1989, 29, 173–221.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Huajie Yin
    • 1
  • Lixue Jiang
    • 1
  • Porun Liu
    • 1
  • Mohammad Al-Mamun
    • 1
  • Yun Wang
    • 1
  • Yu Lin Zhong
    • 1
  • Huagui Yang
    • 1
  • Dan Wang
    • 1
  • Zhiyong Tang
    • 1
  • Huijun Zhao
    • 1
    • 2
    Email author
  1. 1.Centre for Clean Environment and EnergyGriffith University, Gold Coast CampusSouthportAustralia
  2. 2.Centre for Environmental and Energy Nanomaterials, Institute of Solid State PhysicsChinese Academy of SciencesHefeiChina

Personalised recommendations