Nano Research

, Volume 11, Issue 6, pp 3282–3293 | Cite as

Rapid low-temperature synthesis of perovskite/carbon nanocomposites as superior electrocatalysts for oxygen reduction in Zn-air batteries

  • Zhenhua Yan
  • Hongming Sun
  • Xiang Chen
  • Xiaorui Fu
  • Chengcheng Chen
  • Fangyi ChengEmail author
  • Jun Chen
Research Article


The conventional ceramic synthesis of perovskite oxides involves extended high-temperature annealing in air and is unfavorable to the in situ hybridization of the conductive agent, thus resulting in large particle sizes, low surface area and limited electrochemical activities. Here we report a rapid gel auto-combustion approach for the synthesis of a perovskite/carbon hybrid at a low temperature of 180 °C. The energy-saving synthetic strategy allows the formation of small and homogeneously dispersed LaxMnO3±δ/C nanocomposites. Remarkably, the synthesized La0.99MnO3.03/C nanocomposite exhibits comparable oxygen reduction reaction (ORR) activity (with onset and peak potentials of 0.97 and 0.88 V, respectively) to the benchmark Pt/C due to the facilitated charge transfer, optimal eg electron filling of Mn, and coupled C–O–Mn bonding. Furthermore, the nanocomposite efficiently catalyzes a Zn-air battery that delivers a peak power density of 430 mW·cm−2, an energy density of 837 W·h·kgZn−1 and 340 h stability at a current rate of 10 mA·cm−2.


perovskite oxide nanocomposite electrocatalysis oxygen reduction Zn-air batteries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Key Research and Development Program of China (No. 2017YFA0206700), the National Natural Science Foundation of China (NSFC) (Nos. 21231005 and 21322101) and 111 Project (Nos. B12015 and IRT13R30).

Supplementary material

12274_2017_1869_MOESM1_ESM.pdf (5.5 mb)
Rapid low-temperature synthesis of perovskite/carbon nanocomposites as superior electrocatalysts for oxygen reduction in Zn-air batteries


  1. [1]
    Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.CrossRefGoogle Scholar
  2. [2]
    Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192.CrossRefGoogle Scholar
  3. [3]
    Zhao, Q.; Yan, Z. H.; Chen, C. C.; Chen, J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 2017, 117, 10121–10211.CrossRefGoogle Scholar
  4. [4]
    Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.CrossRefGoogle Scholar
  5. [5]
    Meng, F. L.; Zhong, H. X.; Bao, D.; Yan, J. M.; Zhang, X. B. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn air-batteries. J. Am. Chem. Soc. 2016, 138, 10226–10231.CrossRefGoogle Scholar
  6. [6]
    Duan, J. J.; Chen, S.; Dai, S.; Qiao, S. Z. Shape control of Mn3O4 nanoparticles on nitrogen-doped graphene for enhanced oxygen reduction activity. Adv. Funct. Mater. 2014, 24, 2072–2078.CrossRefGoogle Scholar
  7. [7]
    Wu, X.; Meng, G.; Liu, W. X.; Li, T.; Yang, Q.; Sun, X. M.; Liu, J. F. Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Res. 2017, DOI: 10.1007/s12274-017-1615-2.Google Scholar
  8. [8]
    Zhu, E. B.; Li, Y. J.; Chiu, C. Y.; Huang, X. Q; Li, M. F.; Zhao, Z. P.; Liu, Y.; Duan, X. F.; Huang, Y. In situ development of highly concave and composition-confined PtNi octahedra with high oxygen reduction reaction activity and durability. Nano Res. 2016, 9, 149–157.CrossRefGoogle Scholar
  9. [9]
    Bu, L. Z.; Feng, Y. G.; Yao, J. L.; Guo, S. J.; Guo, J.; Huang, X. Q. Facet and dimensionality control of Pt nanostructures for efficient oxygen reduction and methanol oxidation electrocatalysts. Nano Res. 2016, 9, 2811–2821.CrossRefGoogle Scholar
  10. [10]
    Zhang, K.; Han, X. P.; Hu, Z.; Zhang, X. L.; Tao, Z. L.; Chen, J. Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 2015, 44, 699–728.CrossRefGoogle Scholar
  11. [11]
    Shi, J. J.; Lei, K. X.; Sun, W. Y.; Li, F. J.; Cheng, F. Y.; Chen, J. Synthesis of size-controlled CoMn2O4 quantum dots supported on carbon nanotubes for electrocatalytic oxygen reduction/evolution. Nano Res. 2017, DOI: 10.1007/s12274-017-1597-0.Google Scholar
  12. [12]
    Yang, F.; Abadia, M.; Chen, C. Q.; Wang, W. K.; Li, L.; Zhang, L. B.; Rogero, C.; Chuvilin, A.; Knez, M. Design of active and stable oxygen reduction reaction catalysts by embedding CoxOy nanoparticles into nitrogen-doped carbon. Nano Res. 2017, 10, 97–107.CrossRefGoogle Scholar
  13. [13]
    Yang, H. C.; Hu, F.; Zhang, Y. J.; Shi, L. Y.; Wang, Q. B. Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction reaction electrocatalysts. Nano Res. 2016, 9, 207–213.CrossRefGoogle Scholar
  14. [14]
    Sun, T.; Wu, Q.; Che, R. C.; Bu, Y. F.; Jiang, Y. F.; Li, Y.; Yang, L. J.; Wang, X. Z.; Hu, Z. Alloyed Co–Mo nitride as high-performance electrocatalyst for oxygen reduction in acidic medium. ACS Catal. 2015, 5, 1857–1862.CrossRefGoogle Scholar
  15. [15]
    Cao, B. F.; Veith, G. M.; Diaz, R. E.; Liu, J.; Stach, E. A.; Adzic, R. R.; Khalifah, P. G. Cobalt molybdenum oxynitrides: Synthesis, structural characterization, and catalytic activity for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 10753–10757.CrossRefGoogle Scholar
  16. [16]
    Tian, J.; Morozan, A.; Sougrati, M. T.; Lefèvre, M.; Chenitz, R.; Dodelet, J. P.; Jones, D.; Jaouen, F. Optimized synthesis of Fe/N/C cathode catalysts for PEM fuel cells: A matter of iron-ligand coordination strength. Angew. Chem., Int. Ed. 2013, 52, 6867–6870.CrossRefGoogle Scholar
  17. [17]
    Fu, X. R.; Hu, X. F.; Yan, Z. H.; Lei, K. X.; Li, F. J.; Cheng, F. Y.; Chen, J. Template-free synthesis of porous graphitic carbon nitride/carbon composite spheres for electrocatalytic oxygen reduction reaction. Chem. Commun. 2016, 52, 1725–1728.CrossRefGoogle Scholar
  18. [18]
    Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.CrossRefGoogle Scholar
  19. [19]
    Kim, J.; Yin, X.; Tsao, K. C.; Fang, S. H; Yang, H. Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. J. Am. Chem. Soc. 2014, 136, 14646–14649.CrossRefGoogle Scholar
  20. [20]
    Takeguchi, T.; Yamanaka, T.; Takahashi, H.; Watanabe, H.; Kuroki, T.; Nakanishi, H.; Orikasa, Y.; Uchimoto, Y.; Takano, H.; Ohguri, N. et al. Layered perovskite oxide: A reversible air electrode for oxygen evolution/reduction in rechargeable metal-air batteries. J. Am. Chem. Soc. 2013, 135, 11125–11130.CrossRefGoogle Scholar
  21. [21]
    Lee, J. G.; Hwang, J.; Hwang, H. J.; Jeon, O. S.; Jang, J.; Kwon, O.; Lee, Y.; Han, B.; Shul, Y. G. A new family of perovskite catalysts for oxygen-evolution reaction in alkaline media: BaNiO3and BaNi0.83O2.5. J. Am. Chem. Soc. 2016, 138, 3541–3547.Google Scholar
  22. [22]
    Jung, J. I.; Risch, M.; Park, S.; Kim, M. G.; Nam, G.; Jeong, H. Y.; Shao-Horn, Y.; Cho, J. Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 176–183.CrossRefGoogle Scholar
  23. [23]
    Zhao, B.; Zhang, L.; Zhen, D. X.; Yoo, S.; Ding, Y.; Chen, D. C.; Chen, Y.; Zhang, Q.; Doyle, B.; Xiong, X. H. et al. A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nat. Commun. 2017, 8, 14586–14586.Google Scholar
  24. [24]
    Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.CrossRefGoogle Scholar
  25. [25]
    Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.CrossRefGoogle Scholar
  26. [26]
    Calle-Vallejo, F.; Díaz-Morales, O. A.; Kolb, M. J.; Koper, M. T. M. Why is bulk thermochemistry a good descriptor for the electrocatalytic activity of transition metal oxides? ACS Catal. 2015, 5, 869–873.CrossRefGoogle Scholar
  27. [27]
    Stoerzinger, K. A.; Risch, M.; Suntivich, J.; Lü, W. M.; Zhou, J. G.; Biegalski, M. D.; Christen, H. M.; Ariando Venkatesan, T.; Shao-Horn, Y. Oxygen electrocatalysis on (001)-oriented manganese perovskite films: Mn valency and charge transfer at the nanoscale. Energy Environ. Sci. 2013, 6, 1582–1588.CrossRefGoogle Scholar
  28. [28]
    Du, J.; Zhang, T. R.; Cheng, F. Y.; Chu, W. S.; Wu, Z. Y.; Chen, J. Nonstoichiometric perovskite CaMnO3-δ for oxygen electrocatalysis with high activity. Inorg. Chem. 2014, 53, 9106–9114.CrossRefGoogle Scholar
  29. [29]
    Chen, C. F.; King, G.; Dickerson, R. M.; Papin, P. A.; Gupta, S.; Kellogg, W. R.; Wu, G. Oxygen-deficient BaTiO3-x perovskite as an efficient bifunctional oxygen electrocatalyst. Nano Energy 2015, 13, 423–432.CrossRefGoogle Scholar
  30. [30]
    Jin, C.; Cao, X. C.; Zhang, L. Y.; Zhang, C.; Yang, R. Z. Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction. J. Power Sources 2013, 241, 225–230.CrossRefGoogle Scholar
  31. [31]
    Prabu, M.; Ramakrishnan, P.; Ganesan, P.; Manthiram, A.; Shanmugam, S. LaTi0.65Fe0.35O3-δ nanoparticle-decorated nitrogen-doped carbon nanorods as an advanced hierarchical air electrode for rechargeable metal-air batteries. Nano Energy 2015, 15, 92–103.CrossRefGoogle Scholar
  32. [32]
    Zhao, Y. L.; Xu, L.; Mai, L. Q.; Han, C. H.; An, Q. Y.; Xu, X.; Liu, X.; Zhang, Q. J. Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries. Proc. Natl. Acad. Sci. USA 2012, 109, 19569–19574.CrossRefGoogle Scholar
  33. [33]
    Xu, J. J.; Xu, D.; Wang, Z. L.; Wang, H. G.; Zhang, L. L.; Zhang, X. B. Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Angew. Chem., Int. Ed. 2013, 52, 3887–3890.CrossRefGoogle Scholar
  34. [34]
    Li, T. F.; Liu, J. J.; Jin, X. M.; Wang, F.; Song, Y. Composition-dependent electro-catalytic activities of covalent carbon-LaMnO3 hybrids as synergistic catalysts for oxygen reduction reaction. Electrochim. Acta 2016, 198, 115–126.CrossRefGoogle Scholar
  35. [35]
    Fabbri, E.; Mohamed, R.; Levecque, P.; Conrad, O.; Kötz, R.; Schmidt, T. J. Composite electrode boosts the activity of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and carbon toward oxygen reduction in alkaline media. ACS Catal. 2014, 4, 1061–1070.CrossRefGoogle Scholar
  36. [36]
    Hardin, W. G.; Mefford, J. T.; Slanac, D. A.; Patel, B. B.; Wang, X. Q.; Dai, S.; Zhao, X.; Ruoff, R. S.; Johnston, K. P.; Stevenson, K. J. Tuning the electrocatalytic activity of perovskites through active site variation and support interactions. Chem. Mater. 2014, 26, 3368–3376.CrossRefGoogle Scholar
  37. [37]
    Park, H. W.; Lee, D. U.; Zamani, P.; Seo, M. H.; Zazar, L. F.; Chen, Z. W. Electrospun porous nanorod perovskite oxide/ nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries. Nano Energy 2014, 10, 192–200.CrossRefGoogle Scholar
  38. [38]
    Lee, D. U.; Park, H. W.; Park, M. G.; Ismayilov, V.; Chen, Z. W. Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications. ACS Appl. Mater. Interfaces 2015, 7, 902–910.CrossRefGoogle Scholar
  39. [39]
    Civera, A.; Pavese, M.; Saracco, G.; Specchia, V. Combustion synthesis of perovskite-type catalysts for natural gas combustion. Catal. Today 2003, 83, 199–211.CrossRefGoogle Scholar
  40. [40]
    Hernández, E.; Sagredo, V.; Delgado, G. E. Synthesis and magnetic characterization of LaMnO3 nanoparticles. Rev. Mex. Fís. 2015, 61, 166–169.Google Scholar
  41. [41]
    Hussain, G.; Rees, G. J. Combustion of NH4NO3 and carbon based mixtures. Fuel 1993, 72, 1475–1479.CrossRefGoogle Scholar
  42. [42]
    Ueda, K.; Tabata, H.; Kawai, T. Ferromagnetism in LaFeO3-LaCrO3 superlattices. Science 1998, 280, 1064–1066.CrossRefGoogle Scholar
  43. [43]
    Nolting, F.; Scholl, A.; Stohr, J.; Seo, J. W.; Fompeyrine, J.; Siegwart, H.; Locquet, J. P.; Anders, S.; Lüning, J.; Fullerton, E. E. et al. Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature 2000, 405, 767–769.CrossRefGoogle Scholar
  44. [44]
    Xu, J. J.; Wang, Z. L.; Xu, D.; Meng, F. Z.; Zhang, X. B. 3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li-O2 batteries with enhanced rate capability and cyclic performance. Energy Environ. Sci. 2014, 7, 2213–2219.CrossRefGoogle Scholar
  45. [45]
    Wei, Y. C.; Liu, J.; Zhao, Z.; Chen, Y. S.; Xu, C. M.; Duan, A. J.; Jiang, G. Y.; He, H. Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous LaFeO3 for soot oxidation. Angew. Chem., Int. Ed. 2011, 50, 2326–2329.CrossRefGoogle Scholar
  46. [46]
    Mastelaro, V. R.; de Souza, D. P. F.; Mesquita, R. A. X-ray absorption spectroscopic studies of Mn atoms in La1-xSrxMnO3+δ Compounds. X-Ray Spectrom. 2002, 31, 154–157.CrossRefGoogle Scholar
  47. [47]
    Li, C.; Han, X. P.; Cheng, F. Y.; Hu, Y. X.; Chen, C. C.; Chen, J. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. 2015, 6, 7345.CrossRefGoogle Scholar
  48. [48]
    Ran, R.; Wu, X. D.; Weng, D.; Fan, J. Oxygen storage capacity and structural properties of Ni-doped LaMnO3 perovskites. J. Alloy. Compd. 2013, 577, 288–294.CrossRefGoogle Scholar
  49. [49]
    Indra, A.; Menezes, P. W.; Zaharieva, I.; Baktash, E.; Pfrommer, J.; Schwarze, M.; Dau, H.; Driess, M. Active mixed-valent MnOx water oxidation catalysts through partial oxidation (corrosion) of nanostructured MnO particles. Angew. Chem., Int. Ed. 2013, 52, 13206–13210.CrossRefGoogle Scholar
  50. [50]
    Melo, D. M. A.; Borges, F. M. M.; Ambrosio, R. C.; Pimentel, P. M.; da Silva Júnior, C. N.; Melo, M. A. F. Xafs characterization of La1-xSrxMnO3±δ catalysts prepared by pechini’s method. Chem. Phys. 2006, 322, 477–484.CrossRefGoogle Scholar
  51. [51]
    Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.CrossRefGoogle Scholar
  52. [52]
    Zhang, G. Q.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Strongly coupled carbon nanofiber–metal oxide coaxial nanocables with enhanced lithium storage properties. Energy Environ. Sci. 2014, 7, 302–305.CrossRefGoogle Scholar
  53. [53]
    Chen, S.; Qiao, S. Z. Hierarchically porous nitrogen-doped graphene-NiCo2O4 hybrid paper as an advanced electrocatalytic water-splitting material. ACS Nano 2013, 7, 10190–10196.CrossRefGoogle Scholar
  54. [54]
    Dai, L. J.; Liu, M.; Song, Y.; Liu, J. J.; Wang, F. Mn3O4- decorated Co3O4 nanoparticles supported on graphene oxide: Dual electrocatalyst system for oxygen reduction reaction in alkaline medium. Nano Energy 2016, 27, 185–195.CrossRefGoogle Scholar
  55. [55]
    Gorlin, Y.; Lassalle-Kaiser, B.; Benck, J. D.; Gul, S.; Webb, S. M.; Yachandra, V. K.; Yano, J.; Jaramillo, T. F. In situ x-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J. Am. Chem. Soc. 2013, 135, 8525–8534.CrossRefGoogle Scholar
  56. [56]
    Lee, S.; Nam, G.; Sun, J.; Lee, J. S.; Lee, H. W.; Chen, W.; Cho, J.; Cui, Y. Enhanced intrinsic catalytic activity of γ-MnO2 by electrochemical tuning and oxygen vacancy generation. Angew. Chem., Int. Ed. 2016, 55, 8599–8604.CrossRefGoogle Scholar
  57. [57]
    Du, J.; Chen, C. C.; Cheng, F. Y.; Chen, J. Rapid synthesis and efficient electrocatalytic oxygen reduction/evolution reaction of CoMn2O4 nanodots supported on graphene. Inorg. Chem. 2015, 54, 5467–5474.CrossRefGoogle Scholar
  58. [58]
    Pei, P. C.; Ma, Z.; Wang, K. L.; Wang, X. Z.; Song, M. C.; Xu, H. C. High performance zinc air fuel cell stack. J. Power Sources 2014, 249, 13–20.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Zhenhua Yan
    • 1
  • Hongming Sun
    • 1
  • Xiang Chen
    • 1
  • Xiaorui Fu
    • 1
  • Chengcheng Chen
    • 1
  • Fangyi Cheng
    • 1
    Email author
  • Jun Chen
    • 1
    • 2
  1. 1.Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of ChemistryNankai UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and EngineeringNankai UniversityTianjinChina

Personalised recommendations