Advertisement

Nano Research

, Volume 11, Issue 6, pp 3272–3281 | Cite as

A novel strategy to construct supported Pd nanocomposites with synergistically enhanced catalytic performances

  • Shuangfei Cai
  • Xueliang Liu
  • Qiusen Han
  • Cui Qi
  • Rong Yang
  • Chen Wang
Research Article

Abstract

We report a facile protocol for the one-pot preparation of monodisperse Pd nanoparticles (NPs) supported on ultrathin NiCl2 nanosheets (NSs). The effective protocol can be described as in situ reduction–oxidation–assembly to create Pd/NiCl2 nanocomposites and is applicable for the development of stable yet highly active Pd-based heterogeneous catalysts for organic transformations. The Pd/NiCl2 composite displayed synergistically enhanced catalytic activity, high stability, and good recyclability for the tested model oxidation reaction. The in situ nucleation and growth of NiCl2 NS around Pd NPs guaranteed a clean metal–support interface and greatly facilitated the catalytic reaction. This work provides a novel synthesis method for supported Pd nanocomposites suitable for many important applications.

Keywords

Pd nanocomposites one-pot synthesis activity stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We acknowledge the National Key Research and Development Program from the Ministry of Science and Technology of China (No. 2016YFC0207102), the National Natural Science Foundation of China (NSFC) (Nos. 21501034, 21503053 and 21573050) and Chinese Academy of Sciences (No. XDA09030303) for the funding support. This work made use of the resources of the Beijing National Center for Electron Microscopy at Tsinghua University. We thank Dr. Haijun Yang and Xixi Liang from Analysis Center of Department of Chemistry at Tsinghua University for helping with ESR study.

Supplementary material

12274_2017_1868_MOESM1_ESM.pdf (4 mb)
A novel strategy to construct supported Pd nanocomposites with synergistically enhanced catalytic performances

References

  1. [1]
    Balanta, A.; Godard C.; Claver C. Pd nanoparticles for C–C coupling reactions. Chem. Soc. Rev. 2011, 40, 4973–4985.CrossRefGoogle Scholar
  2. [2]
    Mazumder, V.; Sun, S. H. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 2009, 131, 4588–4589.CrossRefGoogle Scholar
  3. [3]
    Kim, S. K.; Kim, C.; Lee, J. H.; Kim, J.; Lee, H.; Moon, S. H. Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. J. Catal. 2013, 306, 146–154.CrossRefGoogle Scholar
  4. [4]
    Narayanan, R.; El-Sayed, M. A. Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. J. Am. Chem. Soc. 2003, 125, 8340–8347.CrossRefGoogle Scholar
  5. [5]
    Fang, Y. X.; Wang, E. K. Simple and direct synthesis of oxygenous carbon supported palladium nanoparticles with high catalytic activity. Nanoscale 2013, 5, 1843–1848.CrossRefGoogle Scholar
  6. [6]
    Veerakumar, P.; Madhu, R.; Chen, S. M.; Veeramani, V.; Hung, C. T.; Tang, P. H.; Wang, C. B.; Liu, S. B. Highly stable and active palladium nanoparticles supported on porous carbon for practical catalytic applications. J. Mater. Chem. A 2014, 2, 16015–16022.CrossRefGoogle Scholar
  7. [7]
    Wang, Z. M.; Xu, C. L.; Gao, G. Q.; Li, X. Facile synthesis of well-dispersed Pd-graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction. RSC Adv. 2014, 4, 13644–13651.CrossRefGoogle Scholar
  8. [8]
    Yang, S. D.; Dong, J.; Yao, Z. H.; Shen, C. M.; Shi, X. Z.; Tian, Y.; Lin, S. X.; Zhang, X. G. One-pot synthesis of graphene-supported monodisperse Pd nanoparticles as catalyst for formic acid electro-oxidation. Sci. Rep. 2014, 4, 4501.CrossRefGoogle Scholar
  9. [9]
    Seo, M. G.; Lee, D. W.; Han, S. S.; Lee, K. Y. Direct synthesis of hydrogen peroxide from hydrogen and oxygen over mesoporous silica-shell-coated, palladium-nanocrystal-grafted SiO2 nanobeads. ACS Catal. 2017, 7, 3039–3048.CrossRefGoogle Scholar
  10. [10]
    Wang, Y.; Liu, J. Y.; Wang, P.; Werth, C. J.; Strathamann, T. J. Palladium nanoparticles encapsulated in core–shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants. ACS Catal. 2014, 4, 3551–3559.CrossRefGoogle Scholar
  11. [11]
    Pélisson, C. H.; Nakanishi, T.; Zhu, Y.; Morisato, K.; Kamei, T.; Maeno, A.; Kaji, H.; Muroyama, S.; Tafu, M.; Kanamori, K. et al. Grafted polymethylhydrosiloxane on hierarchically porous silica monoliths: A new path to monolith-supported palladium nanoparticles for continuous flow catalysis applications. ACS Appl. Mater. Interfaces 2017, 9, 406–412.CrossRefGoogle Scholar
  12. [12]
    Cao, M. H.; Tang, Z. Y.; Liu, Q. P.; Xu, Y.; Chen, M.; Lin, H. P.; Li, Y. Y.; Gross, E.; Zhang, Q. The synergy between metal facet and oxide support facet for enhanced catalytic performance: The case of Pd-TiO2. Nano Lett. 2016, 16, 5298–5302.CrossRefGoogle Scholar
  13. [13]
    Qu, Q.; Zhang, J. H.; Wang, J.; Li, Q. Y.; Xu, C. W.; Lu, X. H. Three-dimensional ordered mesoporous Co3O4 enhanced by Pd for oxygen evolution reaction. Sci. Rep. 2017, 7, 41542.CrossRefGoogle Scholar
  14. [14]
    Hackett, S. F. J.; Brydson, R. M.; Gass, M. H.; Harvey, I.; Newman, A. D.; Wilson, K.; Lee, A. F. High-activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angew. Chem., Int. Ed. 2007, 119, 8747–8750.CrossRefGoogle Scholar
  15. [15]
    Zhong, J. T.; Bin, D.; Yan, B.; Feng, Y.; Zhang, K.; Wang, J.; Wang, C. Q.; Shiraishi, Y.; Yang, P.; Du, Y. K. Highly active and durable flowerlike Pd/Ni(OH)2 catalyst for the electrooxidation of ethanol in alkaline medium. RSC Adv. 2016, 6, 72722–72727.CrossRefGoogle Scholar
  16. [16]
    Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.CrossRefGoogle Scholar
  17. [17]
    Yuwen, L. H.; Xu, F.; Xue, B.; Luo, Z. M.; Zhang, Q.; Bao, B. Q.; Su, S.; Weng, L. X.; Huang, W.; Wang, L. H. General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation. Nanoscale 2014, 6, 5762–5769.CrossRefGoogle Scholar
  18. [18]
    Zhao, M. T.; Deng, K.; He, L. C.; Liu, Y.; Li, G. D.; Zhao, H. J.; Tang, Z. Y. Core-shell palladium nanoparticle@metalorganic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc. 2014, 136, 1738–1741.CrossRefGoogle Scholar
  19. [19]
    He, F.; Li, K.; Yin, C.; Wang, Y.; Tang, H.; Wu, Z. J. Single Pd atoms supported by graphitic carbon nitride, a potential oxygen reduction reaction catalyst from theoretical perspective. Carbon 2017, 114, 619–627.CrossRefGoogle Scholar
  20. [20]
    Su, X. Y.; Vinu, A.; Aldeyab, S. S.; Zhong, L. Highly uniform Pd nanoparticles supported on g-C3N4 for efficiently catalytic Suzuki-Miyaura reactions. Catal. Lett. 2015, 145, 1388–1395.CrossRefGoogle Scholar
  21. [21]
    Sun, J. W.; Fu, Y. S.; He, G. Y.; Sun, X. Q.; Wang, X. Green Suzuki-Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride. Appl. Catal. B: Environ. 2015, 165, 661–667.CrossRefGoogle Scholar
  22. [22]
    Lee, J. H.; Ryu, J.; Kim, J. Y.; Nam, S. W.; Han, J. H.; Lim, T.-H.; Gautam, S.; Chae, K. H.; Yoon, C. W. Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride. J. Mater. Chem. A 2014, 2, 9490–9495.CrossRefGoogle Scholar
  23. [23]
    Ge, J. J.; He, D. S.; Bai, L.; You, R.; Lu, H. Y.; Lin, Y.; Tan, C. L.; Kang, Y. B.; Xiao, B.; Wu, Y. E. et al. Ordered porous Pd octahedra covered with monolayer Ru atoms. J. Am. Chem. Soc. 2015, 137, 14566–14569.CrossRefGoogle Scholar
  24. [24]
    Ge, J. J.; He, D. S.; Chen, W. X.; Ju, H. X.; Zhang, H.; Chao, T. T.; Wang, X. Q.; You, R.; Lin, Y.; Wang, Y. et al. Atomically dispersed Ru on ultrathin Pd nanoribbons. J. Am. Chem. Soc. 2016, 138, 13850–13853.CrossRefGoogle Scholar
  25. [25]
    Mehri, A.; Kochkar, H.; Daniele, S.; Mendez, V.; Ghorbel, A.; Berhault, G. One-pot deposition of palladium on hybrid TiO2 nanoparticles and catalytic applications in hydrogenation. J. Colloid Interf. Sci. 2012, 369, 309–316.CrossRefGoogle Scholar
  26. [26]
    Dumbuya, K.; Denecke, R.; Steinrück, H. P. Surface analysis of Pd/ZnO catalysts dispersed on micro-channeled Al-foils by XPS. Appl. Catal. A: Gen. 2008, 348, 209–213.CrossRefGoogle Scholar
  27. [27]
    Gao, Z. H.; Liu, Z. C.; He, F.; Xu, G. H. Combined XPS and in situ DRIRS study of mechanism of Pd–Fe/α-Al2O3 catalyzed CO coupling reaction to diethyl oxalate. J. Mol. Catal. A: Chem. 2005, 235, 143–149.CrossRefGoogle Scholar
  28. [28]
    Yan, X. D.; Tian, L. H.; Chen, X. B. Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction. J. Power Sources 2015, 300, 336–343.CrossRefGoogle Scholar
  29. [29]
    Matienzo, L. J.; Yin, L. I.; Grim, S. O.; Swartz, Jr., W. E. X-ray photoelectron spectroscopy of nickel compounds. Inorg. Chem. 1973, 12, 2762–2769.CrossRefGoogle Scholar
  30. [30]
    Mahmood, N.; Tahir, M.; Mahmood, A.; Zhu, J. H.; Cao, C. B.; Hou, Y. L. Chlorine-doped carbonated cobalt hydroxide for supercapacitors with enormously high pseudocapacitive performance and energy density. Nano Energy 2015, 11, 267–276.CrossRefGoogle Scholar
  31. [31]
    Wu, Y. E.; Wang, D. S.; Li, Y. D. Understanding of the major reactions in solution synthesis of functional nanomaterials. Sci. China Mater. 2016, 59, 938–996.CrossRefGoogle Scholar
  32. [32]
    Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquidphase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.CrossRefGoogle Scholar
  33. [33]
    Wang, D. S.; Li, Y. D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280–6281.CrossRefGoogle Scholar
  34. [34]
    Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel Prize. Angew. Chem., Int. Ed. 2012, 51, 5062–5085.CrossRefGoogle Scholar
  35. [35]
    Cai, S. F.; Jia, X. H.; Han Q. S.; Yan, X. Y.; Yang R.; Wang, C. Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects. Nano Res. 2017, 10, 2056–2069.CrossRefGoogle Scholar
  36. [36]
    Tao, Y.; Ju, E. G.; Ren, J. S.; Qu, X. G. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015, 27, 1097–1104.CrossRefGoogle Scholar
  37. [37]
    Sun, H. J.; Gao, N.; Dong, K.; Ren, J. S.; Qu, X. G. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 2014, 8, 6202–6210.CrossRefGoogle Scholar
  38. [38]
    Xia, X. H.; Zhang, J. T.; Lu, N.; Kim, M. J.; Ghale, K.; Xu, Y.; McKenzie, E.; Liu, J. B.; Ye, H. H. Pd-Ir core-shell nanocubes: A type of highly efficient and versatile peroxidase mimic. ACS Nano 2015, 9, 9994–10004.CrossRefGoogle Scholar
  39. [39]
    Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.CrossRefGoogle Scholar
  40. [40]
    Tao, Y.; Lin, Y. H.; Huang, Z. Z.; Ren, J. S.; Qu, X. G. Incorporating graphene oxide and gold nanoclusters: A synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv. Mater. 2013, 25, 2594–2599.CrossRefGoogle Scholar
  41. [41]
    Acerbi, N.; Edman Tsang, S. C.; Jones, G.; Golunski, S.; Collier, P. Rationalization of interactions in precious metal/ ceria catalysts using the d-band center model. Angew. Chem., Int. Ed. 2013, 52, 7737–7741.CrossRefGoogle Scholar
  42. [42]
    Chen, D.; Li, C. Y.; Liu, H.; Ye, F.; Yang, J. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions. Sci. Rep. 2015, 5, 11949.CrossRefGoogle Scholar
  43. [43]
    Wang, G. L.; Xu, X. F.; Qiu, L.; Dong, Y. M.; Li, Z. J.; Zhang, C. Dual responsive enzyme mimicking activity of AgX (X = Cl, Br, I) nanoparticles and its application for cancer cell detection. ACS Appl. Mater. Interfaces 2014, 6, 6434–6442.CrossRefGoogle Scholar
  44. [44]
    Zhang, X. D.; He, S. H.; Chen, Z. H.; Huang, Y. M. CoFe2O4 nanoparticles as oxidase mimic-mediated chemiluminescence of aqueous luminol for sulfite in white wines. J. Agric. Food Chem. 2013, 61, 840–847.CrossRefGoogle Scholar
  45. [45]
    Cai, S. F.; Qi, C.; Li, Y. D.; Han, Q. S.; Yang, R.; Wang, C. PtCo bimetallic nanoparticles with high oxidase-like catalytic activity and their applications for magnetic-enhanced colorimetric biosensing. J. Mater. Chem. B 2016, 4, 1869–1877.CrossRefGoogle Scholar
  46. [46]
    Lin, T. R.; Zhong, L. S.; Guo, L. Q.; Fu, F. F.; Chen, G. N. Seeing diabetes: Visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 2014, 6, 11856–11862.CrossRefGoogle Scholar
  47. [47]
    Su, L.; Feng, J.; Zhou, X. M.; Ren, C. L.; Li, H. H.; Chen, X. G. Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal. Chem. 2012, 84, 5753–5758.CrossRefGoogle Scholar
  48. [48]
    Tian, J. Q.; Liu, Q.; Asiri, A. M.; Qusti, A. H.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheets: A novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 2013, 5, 11604–11609.CrossRefGoogle Scholar
  49. [49]
    Lin, F.; Wang, D. E.; Jiang, Z. X.; Ma, Y.; Li, J.; Li, R. G.; Li, C. Photocatalytic oxidation of thiophene on BiVO4 with dual co-catalysts Pt and RuO2 under visible light irradiation using molecular oxygen as oxidant. Energy Environ. Sci. 2012, 5, 6400–6406.CrossRefGoogle Scholar
  50. [50]
    Voinov, M. A.; Sosa Pagán, J. O.; Morrison, E.; Smirnova, T. I.; Smirnov, A. I. Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J. Am. Chem. Soc. 2011, 133, 35–41.CrossRefGoogle Scholar
  51. [51]
    Solomon, L. A.; Kronenberg, J. B.; Fry, H. C. Control of heme coordination and catalytic activity by conformational changes in peptide-amphiphile assemblies. J. Am. Chem. Soc. 2017, 139, 8497–8507.CrossRefGoogle Scholar
  52. [52]
    Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. L.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.CrossRefGoogle Scholar
  53. [53]
    Chen, X. M.; Su, B. Y.; Cai, Z. X.; Chen, X.; Oyama, M. PtPd nanodendrites supported on graphene nanosheets: A peroxidase-like catalyst for colorimetric detection of H2O2. Sens. Actuat. B: Chem. 2014, 201, 286–292.CrossRefGoogle Scholar
  54. [54]
    Liu, M.; Zhao, H. M.; Chen, S.; Yu, H. T.; Quan, X. Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano 2012, 6, 3142–3151.CrossRefGoogle Scholar
  55. [55]
    Zhang, L. N.; Deng, H. H.; Lin, F. L.; Xu, X. W.; Weng, S. H.; Liu, A. L.; Lin, X. H.; Xia, X. H.; Chen, W. In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Anal. Chem. 2014, 86, 2711–2718.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS center for Excellence in Nanoscience, National Center for Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingChina
  2. 2.Sino-Danish CollegeUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations