Advertisement

Nano Research

, Volume 11, Issue 5, pp 2405–2411 | Cite as

Single Cr atom catalytic growth of graphene

  • Huy Q. Ta
  • Liang Zhao
  • Wanjian Yin
  • Darius Pohl
  • Bernd Rellinghaus
  • Thomas Gemming
  • Barbara Trzebicka
  • Justinas Palisaitis
  • Gao Jing
  • Per O. Å. Persson
  • Zhongfan Liu
  • Alicja Bachmatiuk
  • Mark H. Rümmeli
Research Article

Abstract

Single atoms are the ultimate minimum size limit for catalysts. Graphene, as an exciting, ultimately thin (one atom thick) material can be imaged in a transmission electron microscope with relatively few imaging artefacts. Here, we directly observe the behavior of single Cr atoms in graphene mono- and di-vacancies and, more importantly, at graphene edges. Similar studies at graphene edges with other elemental atoms, with the exception of Fe, show catalytic etching of graphene. Fe atoms have been shown to both etch and grow graphene. In contrast, Cr atoms are only observed to induce graphene growth. Complementary theoretical calculations illuminate the differences between Fe and Cr, and confirm single Cr atoms as superior catalysts for sp2 carbon growth.

Keywords

in situ transmission electron microscope (TEM) electron driven catalysis Cr single atom graphene synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The following are gratefully acknowledged. The National Natural Science Foundation of China (No. 51672181), the National Science Center for the financial support within the frame of the Sonata Program (No. 2014/13/D/ST5/02853) and the Opus program (No. 2015/19/B/ST5/03399). H. Q. T. thanks Soochow University for support. P. O. Å. P. wishes to acknowledge the Knut and Alice Wallenberg foundation for support of the electron microscopy laboratory in Linköping.

Supplementary material

12274_2017_1861_MOESM1_ESM.pdf (2.4 mb)
Single Cr atom catalytic growth of graphene

References

  1. [1]
    Rümmeli, M. H.; Rocha, C. G.; Ortmann, F.; Ibrahim, I.; Sevincli, H.; Börrnert, F.; Kunstmann, J.; Bachmatiuk, A.; Pötsche, M.; Shiraishi, M. et al. Graphene: Piecing it together. Adv. Mater. 2011, 23, 4471–4490.CrossRefGoogle Scholar
  2. [2]
    Al-Dulaimi, N.; Lewis, E. A.; Lewis, D. J.; Howell, S. K.; Haigh, S. J.; O’Brien, P. Sequential bottom-up and top-down processing for the synthesis of transition metal dichalcogenide nanosheets: The case of rhenium disulfide (ReS2). Chem. Commun. 2016, 52, 7878–7881.CrossRefGoogle Scholar
  3. [3]
    Zhao, J.; Deng, Q.; Avdoshenko, S. M.; Fu, L.; Eckert, J.; Rümmeli, M. H. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges. Proc. Natl. Acad. Sci. USA 2014, 111, 15641–15646.CrossRefGoogle Scholar
  4. [4]
    Qiao, B.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.CrossRefGoogle Scholar
  5. [5]
    Sun, S. H.; Zhang, G. X.; Gauquelin, N.; Chen, N.; Zhou, J. G.; Yang, S. L.; Chen, W. F.; Meng, X. B.; Geng, D. S.; Banis, M. N. et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 2013, 3, 1775–1784.CrossRefGoogle Scholar
  6. [6]
    Sun, L. T.; Banhart, F.; Warner, J. Two-dimensional materials under electron irradiation. MRS Bull. 2015, 40, 29–37.CrossRefGoogle Scholar
  7. [7]
    Ramasse, Q. M.; Zan, R.; Bangert, U.; Boukhvalov, D. W.; Son, Y. W.; Novoselov, K. S. Direct experimental evidence of metal-mediated etching of suspended graphene. ACS Nano 2012, 6, 4063–4071.CrossRefGoogle Scholar
  8. [8]
    Wang, W. L.; Santos, E. J. G.; Jiang, B.; Cubuk, E. D.; Ophus, C.; Centeno, A.; Pesquera, A.; Zurutuza, A.; Ciston, J.; Westervelt, R. et al. Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene. Nano Lett. 2014, 14, 450–455.CrossRefGoogle Scholar
  9. [9]
    Robertson, A. W.; Montanari, B.; He, K.; Kim, J.; Allen, C. S. Wu, Y. A.; Olivier, J.; Neethling, J.; Harrison, N.; Kirkland, A. I. et al. Dynamics of single Fe atoms in graphene vacancies. Nano Lett. 2013, 13, 1468–1475.CrossRefGoogle Scholar
  10. [10]
    Zhao, L.; Ta, H. Q.; Dianat, A.; Soni, A.; Fediai, A.; Yin, W. J.; Gemming, T.; Trzebicka, B.; Cuniberti, G.; Liu, Z. F. et al. In situ electron driven carbon nanopillar-fullerene transformation through Cr atom mediation. Nano Lett. 2017, 17, 4725–4732.CrossRefGoogle Scholar
  11. [11]
    Liu, Y. Y.; Dobrinsky, A.; Yakobson, B. I. Graphene edge from armchair to zigzag: The origins of nanotube chirality? Phys. Rev. Lett. 2010, 105, 235502.CrossRefGoogle Scholar
  12. [12]
    Warner, J. H.; Rümmeli, M. H.; Ge, L.; Gemming, T.; Montanari, B.; Harrison, N. M.; Büchner, B.; Briggs, G. A. D. Structural transformations in graphene studied with high spatial and temporal resolution. Nat. Nanotechnol. 2009, 4, 500–504.CrossRefGoogle Scholar
  13. [13]
    Hernadia, K.; Fonseca, A.; Nagya, J. B.; Bernaerts, D.; Lucas, A. A. Fe-catalyzed carbon nanotube formation. Carbon 1996, 34, 1249–1257.CrossRefGoogle Scholar
  14. [14]
    Rümmeli, M. H.; Schäffel, F.; Kramberger, C.; Gemming, T.; Bachmatiuk, A.; Kalenczuk, R. J.; Rellinghaus, B.; Büchner, B.; Pichler, T. Oxide-driven carbon nanotube growth in supported catalyst CVD. J. Am. Chem. Soc. 2007, 129, 15772–15773.CrossRefGoogle Scholar
  15. [15]
    An, H.; Lee, W. J.; Jung, J. Graphene synthesis on Fe foil using thermal CVD. Curr. Appl. Phys. 2011, 11, S81–S85.CrossRefGoogle Scholar
  16. [16]
    Baker, R. T. K.; Harris, P. S.; Thomas, R. B.; Waite, R. J. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 1973, 30, 86–95.CrossRefGoogle Scholar
  17. [17]
    Robertson, J.; Hofmann, S.; Cantoro, M.; Parvez, A.; Ducati, C.; Zhong, G.; Sharma, R.; Mattevi, C. Controlling the catalyst during carbon nanotube growth. J. Nanosci. Nanotechnol. 2008, 8, 6105–6111.CrossRefGoogle Scholar
  18. [18]
    Ta, H. Q.; Perello, D. J.; Duong D. L.; Han G. H.; Gorantla S.; Nguyen V. L.; Bachmatiuk, A.; Rotkin, S.V.; Lee, Y. H.; Rümmeli, M. H. Stranski−krastanov and volmer−weber CVD growth regimes to control the stacking order in bilayer graphene. Nano Lett. 2016, 16, 6403–6410.CrossRefGoogle Scholar
  19. [19]
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  20. [20]
    Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  21. [21]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  22. [22]
    Mills, G.; Jónsson, H.; Schenterb, G. K. Reversible work transition state theory: Application to dissociative adsorption of hydrogen. Surf. Sci. 1995, 324, 305–337.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Huy Q. Ta
    • 1
    • 2
    • 3
  • Liang Zhao
    • 1
    • 2
  • Wanjian Yin
    • 1
    • 2
  • Darius Pohl
    • 4
  • Bernd Rellinghaus
    • 4
  • Thomas Gemming
    • 4
  • Barbara Trzebicka
    • 3
  • Justinas Palisaitis
    • 5
  • Gao Jing
    • 1
    • 2
  • Per O. Å. Persson
    • 5
  • Zhongfan Liu
    • 1
    • 2
    • 6
  • Alicja Bachmatiuk
    • 1
    • 2
    • 3
    • 4
  • Mark H. Rümmeli
    • 1
    • 2
    • 3
    • 4
  1. 1.Soochow Institute for Energy and Materials Innovations, College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhouChina
  2. 2.Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu ProvinceSoochow UniversitySuzhouChina
  3. 3.Centre of Polymer and Carbon MaterialsPolish Academy of SciencesZabrzePoland
  4. 4.IFW DresdenDresdenGermany
  5. 5.Department of Physics, Chemistry and Biology (IFM)Linköping UniversityLinköpingSweden
  6. 6.Center for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations