Advertisement

Nano Research

, Volume 11, Issue 6, pp 3233–3243 | Cite as

Heterostructured graphene quantum dot/WSe2/Si photodetector with suppressed dark current and improved detectivity

  • Mengxing Sun
  • Qiyi Fang
  • Dan Xie
  • Yilin Sun
  • Liu Qian
  • Jianlong Xu
  • Peng Xiao
  • Changjiu Teng
  • Weiwei Li
  • Tianling Ren
  • Yanfeng Zhang
Research Article
  • 238 Downloads

Abstract

A high-performance heterojunction photodetector is formed by combining an n-type Si substrate with p-type monolayer WSe2 obtained using physical vapor deposition. The high quality of the WSe2/Si heterojunction is demonstrated by the suppressed dark current of 1 nA and the extremely high rectification ratio of 107. Under illumination, the heterojunction exhibits a wide photoresponse range from ultraviolet to near-infrared radiation. The introduction of graphene quantum dots (GQDs) greatly elevates the photodetective capabilities of the heterojunction with strong light absorption and long carrier lifetimes. The GQDs/WSe2/Si heterojunction exhibits a high responsivity of ∼ 707 mA·W–1, short response time of 0.2 ms, and good specific detectivity of ∼ 4.51 × 109 Jones. These properties suggest that the GQDs/WSe2/Si heterojunction holds great potential for application in future high-performance photodetectors.

Keywords

heterojunction photodetector Si WSe2 graphene quantum dots 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 51672154 and 51372130), MoST(No. 2016YFA0200200), Natural Science Foundation of Jiangsu Province (No. BK20160328), and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (No. KF201517).

Supplementary material

12274_2017_1855_MOESM1_ESM.pdf (1.3 mb)
Heterostructured graphene quantum dot/WSe2/Si photodetector with suppressed dark current and improved detectivity

References

  1. [1]
    Rogalski, A.; Antoszewski, J.; Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 2009, 105, 091101.CrossRefGoogle Scholar
  2. [2]
    Guo, N.; Hu, W. D.; Liao, L.; Yip, S.; Ho, J. C.; Miao, J. S.; Zhang, Z.; Zou, J.; Jiang, T.; Wu, S. W. et al. Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature. Adv. Mater. 2014, 26, 8203–8209.CrossRefGoogle Scholar
  3. [3]
    Mueller, T.; Xia, F. N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301.CrossRefGoogle Scholar
  4. [4]
    Lemme, M. C.; Koppens, F. H. L.; Falk A. L.; Rudner, M. S.; Park, H.; Levitov, L. S.; Marcus, C. M. Gate-activated photoresponse in a graphene p-n junction. Nano Lett. 2011, 11, 4134–4137.CrossRefGoogle Scholar
  5. [5]
    Deng, Y. X.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y. J.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X. F.; Ye, P. D. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano 2014, 8, 8292–8299.CrossRefGoogle Scholar
  6. [6]
    Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 2015, 9, 247–252.CrossRefGoogle Scholar
  7. [7]
    Li, X. M.; Zhu, M.; Du, M. D.; Lv, Z.; Zhang, L.; Li, Y. C.; Yang, Y.; Yang, T. T.; Li, X.; Wang, K. L. et al. High detectivity graphene-silicon heterojunction photodetector. Small 2016, 12, 595–601.CrossRefGoogle Scholar
  8. [8]
    Zhang, Y.; Yu, Y. Q.; Mi, L. F.; Wang, H.; Zhu, Z. F.; Wu, Q. Y.; Zhang, Y. G.; Jiang, Y. In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for highspeed visible-near-infrared photodetectors. Small 2016, 8, 1062–1071.CrossRefGoogle Scholar
  9. [9]
    Zhu, S. Y.; Yu, M. B.; Lo, G. Q.; Kwong, D. L. Near-infrared waveguide-based nickel silicide schottky-barrier photodetector for optical communications. Appl. Phys. Lett. 2008, 92, 081103.CrossRefGoogle Scholar
  10. [10]
    Zhang, S. L.; Östling, M. Metal silicides in CMOS technology: Past, present, and future trends. Crit. Rev. Solid State Mater. Sci. 2003, 28, 1–129.CrossRefGoogle Scholar
  11. [11]
    Zhang, W. J.; Chuu, C. P.; Huang, J. K.; Chen, C. H.; Tsai, M. L.; Chang, Y. H.; Liang, C. T.; Chen, Y. Z.; Chueh, Y. L.; He, J. H. et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 2014, 4, 3826.CrossRefGoogle Scholar
  12. [12]
    Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42–46.CrossRefGoogle Scholar
  13. [13]
    Li, X. M.; Zhu, H. W.; Wang, K. L.; Cao, A. Y.; Wei, J. Q.; Li, C. Y.; Jia, Y.; Li, Z.; Li, X.; Wu, D. H. Grapheneon-silicon Schottky junction solar cells. Adv. Mater. 2010, 22, 2743–2748.CrossRefGoogle Scholar
  14. [14]
    Yu, T.; Wang, F.; Xu, Y.; Ma, L. L.; Pi, X. D.; Yang, D. R. Graphene coupled with silicon quantum dots for highperformance bulk-silicon-based Schottky-junction photodetectors. Adv. Mater. 2016, 28, 4912–4919.CrossRefGoogle Scholar
  15. [15]
    An, X. H.; Liu, F. Z.; Jung, Y. J.; Kar, S. Tunable graphene–silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909–916.CrossRefGoogle Scholar
  16. [16]
    Pezeshki, A.; Shokouh, S. H. H.; Nazari, T.; Oh, K.; Im, S. Electric and photovoltaic behavior of a few-layer a-MoTe2/ MoS2 dichalcogenide heterojunction. Adv. Mater. 2016, 28, 3216–3222.CrossRefGoogle Scholar
  17. [17]
    Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013, 13, 3664–3670.CrossRefGoogle Scholar
  18. [18]
    Wang, L.; Jie, J. S.; Shao, Z. B.; Zhang, Q.; Zhang, X. H.; Wang, Y. M.; Sun, Z.; Lee, S. T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, highdetectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919.CrossRefGoogle Scholar
  19. [19]
    Esmaeili-Rad, M. R.; Salahuddin, S. High performance molybdenum disulfide amorphous silicon heterojunction photodetector. Sci. Rep. 2013, 3, 2345.CrossRefGoogle Scholar
  20. [20]
    Lopez-Sanchez, O.; Llado, E. A.; Koman, V.; Morral, A. F.; Radenovic, A.; Kis, A. Light generation and harvesting in a van der Waals heterostructure. ACS Nano 2014, 8, 3042–3048.CrossRefGoogle Scholar
  21. [21]
    Hao, L. Z.; Liu, Y. J.; Gao, W.; Han, Z. D.; Xue, Q. Z.; Zeng, H. Z.; Wu, Z. P.; Zhu, J.; Zhang, W. L. Electrical and photovoltaic characteristics of MoS2/Si p-n junctions. J. Appl. Phys. 2015, 117, 114502.CrossRefGoogle Scholar
  22. [22]
    Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368.CrossRefGoogle Scholar
  23. [23]
    Schmidt, H.; Wang, S. F.; Chu, L. Q.; Toh, M. L.; Kumar, R.; Zhao, W. J.; Castro Neto, A. H.; Martin, J.; Adam, S.; Özyilmaz, B. et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 2014, 14, 1909–1913.CrossRefGoogle Scholar
  24. [24]
    Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F. M. Anomalous Raman spectra and thickness-dependent electronic properties of WSe2. Phys. Rev. B 2013, 87, 165409.CrossRefGoogle Scholar
  25. [25]
    Mao, J.; Yu, Y. Q.; Wang, L.; Zhang, X. J.; Wang, Y. M.; Shao, Z. B.; Jie, J. S. Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode. Adv. Sci. 2016, 3, 1600018.CrossRefGoogle Scholar
  26. [26]
    Chowdhury, R. K.; Maiti, R.; Ghorai, A.; Midya, A.; Ray, S. K. Novel silicon compatible p-WS2 2D/3D heterojunction devices exhibiting broadband photoresponse and superior detectivity. Nanoscale 2016, 8, 13429–13436.CrossRefGoogle Scholar
  27. [27]
    Yao, J. D.; Shao, J. M.; Wang, Y. X.; Zhao, Z. R.; Yang, G. W. Ultra-broadband and high response of the Bi2Te3–Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale 2015, 7, 12535–12541.CrossRefGoogle Scholar
  28. [28]
    Chen, J. R.; Odenthal, P. M.; Swartz, A. G.; Floyd, G. C.; Wen, H.; Luo, K. Y.; Kawakami, R. K. Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett. 2013, 13, 3106–3110.CrossRefGoogle Scholar
  29. [29]
    Zeng, L. H.; Wang, M. Z.; Hu, H.; Nie, B.; Yu, Y. Q.; Wu, C. Y.; Wang, L.; Hu, J. G.; Xie, C.; Liang, F. X. et al. Monolayer graphene/germanium Schottky junction as highperformance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces 2013, 5, 9362–9366.CrossRefGoogle Scholar
  30. [30]
    Li, Z. W.; Ye, R. Q.; Feng, R.; Kang, Y. M.; Zhu, X.; Tour, J. M.; Fang, Z. Y. Graphene quantum dots doping of MoS2 monolayers. Adv. Mater. 2015, 27, 5235–5240.CrossRefGoogle Scholar
  31. [31]
    Zhang, Q.; Jie, J. S.; Diao, S. L.; Shao, Z. B.; Zhang, Q.; Wang, L.; Deng, W.; Hu, W. D.; Xia, H.; Yuan, X. D. et al. Solution-processed graphene quantum dot deep-UV photodetectors. ACS Nano 2015, 9, 1561–1570.CrossRefGoogle Scholar
  32. [32]
    Sun, Y. Q.; Wang, S. Q.; Li, C.; Luo, P. H.; Tao, L.; Wei, Y.; Shi, G. Q. Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Phys. Chem. Chem. Phys. 2013, 15, 9907–9913.CrossRefGoogle Scholar
  33. [33]
    Jiang, Y.; Zhang, W. J.; Jie, J. S.; Meng, X. M.; Fan, X.; Lee, S. T. Photoresponse properties of CdSe single-nanoribbon photodetectors. Adv. Funct. Mater. 2007, 17, 1795–1800.CrossRefGoogle Scholar
  34. [34]
    McDonnell, S.; Azcatl, A.; Addou; R.; Gong, C.; Battaglia, C.; Chuang, S.; Cho, K.; Javey, A.; Wallace, R. M. Hole contacts on transition metal dichalcogenides: Interface chemistry and band alignments. ACS Nano 2014, 8, 6265–6272.CrossRefGoogle Scholar
  35. [35]
    Xu, H.; Wu, J. X.; Feng, Q. L.; Mao, N. N.; Wang, C. M.; Zhang, J. High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. Small 2014, 10, 2300–2306.CrossRefGoogle Scholar
  36. [36]
    Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 2014, 15, 709–713.CrossRefGoogle Scholar
  37. [37]
    Ma, D. L.; Shi, J. P.; Ji, Q. Q.; Chen, K.; Yin, J. B.; Lin, Y. W.; Zhang, Y.; Liu, M. X.; Feng, Q. L.; Song, X. J. et al. A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Res. 2015, 8, 3662–3672.CrossRefGoogle Scholar
  38. [38]
    Mukherjee, S.; Biswas, S.; Das, S.; Ray, S. K. Solution-processed, hybrid 2D/3D MoS2/Si heterostructures with superior junction characteristics. Nanotechnology 2017, 28, 135203.CrossRefGoogle Scholar
  39. [39]
    Pradel, K. C.; Jevasuwan, W.; Suwardy, J.; Bando, Y.; Fukata, N.; Wang, Z. L. Solution derived p-ZnO/n-Si nanowire heterojunctions for photodetection. Chem. Phys. Lett. 2016, 658, 158–161.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Mengxing Sun
    • 1
  • Qiyi Fang
    • 2
  • Dan Xie
    • 1
  • Yilin Sun
    • 1
  • Liu Qian
    • 3
  • Jianlong Xu
    • 4
  • Peng Xiao
    • 4
  • Changjiu Teng
    • 1
  • Weiwei Li
    • 1
  • Tianling Ren
    • 1
  • Yanfeng Zhang
    • 2
  1. 1.Institute of Microelectronics & Tsinghua National Laboratory for Information Science and Technology (TNList)Tsinghua UniversityBeijingChina
  2. 2.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina
  3. 3.Department of ChemistryTsinghua UniversityBeijingChina
  4. 4.Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhouChina

Personalised recommendations