Advertisement

Nano Research

, Volume 11, Issue 6, pp 3222–3232 | Cite as

One-pot synthesis of Au@Pt star-like nanocrystals and their enhanced electrocatalytic performance for formic acid and ethanol oxidation

  • Yi Peng
  • Lidong Li
  • Ran Tao
  • Lingyu Tan
  • Mengna Qiu
  • Lin Guo
Research Article

Abstract

The current bottleneck facing further developments in fuel cells is the lack of durable electrocatalysts with satisfactory activity. In this study, a simple and fast one-pot wet-chemical method is proposed to synthesize novel Au@Pt star-like bimetallic nanocrystals (Au@Pt SLNCs) with a low Pt/Au ratio of 1:4, which show great electrocatalytic properties and outstanding stability toward the electro-oxidation reactions commonly found in fuel cells. The star-like Au core (90 ± 20 nm) is partially coated with 5 nm Pt nanocluster shells, a morphology which creates a large amount of boundaries and edges, thus tuning the surface electronic structure as demonstrated by X-ray photoelectron spectroscopy and CO-stripping measurements. This promotes excellent electrocatalytic performance towards the formic acid oxidation reaction in acidic media and the ethanol oxidation reaction in alkaline media, compared to commercial Pt or Au@Pt triangular nanoprisms, in which the Au core is fully coated by a Pt shell. Au@Pt SLNCs have the highest current density within the dehydrogenation potential range, needing the least potential to achieve a certain current density as well as the highest long-term stability. Because of the small amount of Pt usage, very fast synthesis, excellent electrocatalytic activity and durability, the proposed Au@Pt SLNCs have a promising practical application in fuel cells.

Keywords

Au@Pt core–shell nanocrystals electrocatalyst formic acid ethanol oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21273001) and the National Basic Research Program of China (No. 2014CB931802).

Supplementary material

12274_2017_1851_MOESM1_ESM.pdf (1.7 mb)
One-pot synthesis of Au@Pt star-like nanocrystals and their enhanced electrocatalytic performance for formic acid and ethanol oxidation

References

  1. [1]
    Sharaf, O. Z.; Orhan, M. F. An overview of fuel cell technology: Fundamentals and applications. Renew. Sust. Energ. Rev. 2014, 32, 810–853.CrossRefGoogle Scholar
  2. [2]
    Peng, Y.; Lu, B. Z.; Wang, N.; Li, L. G.; Chen, S. W. Impacts of interfacial charge transfer on nanoparticle electrocatalytic activity towards oxygen reduction. Phys. Chem. Chem. Phys. 2017, 19, 9336–9348.CrossRefGoogle Scholar
  3. [3]
    Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57–69.CrossRefGoogle Scholar
  4. [4]
    Sui, S.; Wang, X. Y.; Zhou, X. T.; Su, Y. H.; Riffatc, S.; Liu, C. J. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 2017, 5, 1808–1825.CrossRefGoogle Scholar
  5. [5]
    Sheng, T.; Xu, Y. F.; Jiang, Y. X.; Huang, L.; Tian, N.; Zhou, Z. Y.; Broadwell, I.; Sun, S. G. Structure design and performance tuning of nanomaterials for electrochemical energy conversion and storage. Acc. Chem. Res. 2016, 49, 2569–2577.CrossRefGoogle Scholar
  6. [6]
    Zhu, C. Z.; Du, D.; Eychmuller, A.; Lin, Y. H. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 2015, 115, 8896–8943.CrossRefGoogle Scholar
  7. [7]
    Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Bridgebonded formate: Active intermediate or spectator species in formic acid oxidation on a Pt film electrode? Langmuir 2006, 22, 10399–10408.CrossRefGoogle Scholar
  8. [8]
    Cuesta, A. At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum. J. Am. Chem. Soc. 2006, 128, 13332–13333.CrossRefGoogle Scholar
  9. [9]
    Cuesta, A.; Cabello, G.; Gutiérrez, C.; Osawa, M. Adsorbed formate: The key intermediate in the oxidation of formic acid on platinum electrodes. Phys. Chem. Chem. Phys. 2011, 13, 20091–20095.CrossRefGoogle Scholar
  10. [10]
    Herrero, E.; Fernández-Vega, A.; Feliu, J. M.; Aldaz, A. Poison formation reaction from formic acid and methanol on Pt(111) electrodes modified by irreversibly adsorbed Bi and As. J. Electroanal. Chem. 1993, 350, 73–88.CrossRefGoogle Scholar
  11. [11]
    Sun, S. G.; Clavilier, J. Electrochemical study on the poisoning intermediate formed from methanol dissociation at low index and stepped platinum surfaces. J. Electroanal. Chem. 1987, 236, 95–112.CrossRefGoogle Scholar
  12. [12]
    Wang, S. Y.; Kristian, N.; Jiang, S. P.; Wang, X. Controlled deposition of Pt on Au nanorods and their catalytic activity towards formic acid oxidation. Electrochem. Commun. 2008, 10, 961–964.CrossRefGoogle Scholar
  13. [13]
    Zhang, S.; Shao, Y. Y.; Liao, H. G.; Liu, J.; Aksay, I. A.; Yin, G. P.; Lin, Y. H. Graphene decorated with PtAu alloy nanoparticles: Facile synthesis and promising application for formic acid oxidation. Chem. Mater. 2011, 23, 1079–1081.CrossRefGoogle Scholar
  14. [14]
    Zhang, S.; Shao, Y. Y.; Yin, G. P.; Lin, Y. H. Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation. Angew. Chem., Int. Ed. 2010, 49, 2211–2214.CrossRefGoogle Scholar
  15. [15]
    Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.CrossRefGoogle Scholar
  16. [16]
    Zhou, Z. Y.; Huang, Z. Z.; Chen, D. J.; Wang, Q.; Tian, N.; Sun, S. G. High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew. Chem., Int. Ed. 2010, 49, 411–414.CrossRefGoogle Scholar
  17. [17]
    Colmati, F.; Antolini, E.; Gonzalez, E. R. Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts. J. Power Sources 2006, 157, 98–103.CrossRefGoogle Scholar
  18. [18]
    Dong, L. F.; Gari, R. R. S.; Li, Z.; Craig, M. M.; Hou, S. F. Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 2010, 48, 781–787.CrossRefGoogle Scholar
  19. [19]
    Dutta, A.; Mahapatra, S. S.; Datta, J. High performance PtPdAu nano-catalyst for ethanol oxidation in alkaline media for fuel cell applications. Int. J. Hydrogen Energ. 2011, 36, 14898–14906.CrossRefGoogle Scholar
  20. [20]
    Ren, F. F.; Wang, H. W.; Zhai, C. Y.; Zhu, M. S.; Yue, R. R.; Du, Y. K.; Yang, P.; Xu, J. K.; Lu, W. S. Clean method for the synthesis of reduced graphene oxide-supported PtPd alloys with high electrocatalytic activity for ethanol oxidation in alkaline medium. ACS Appl. Mater. Interfaces 2014, 6, 3607–3614.CrossRefGoogle Scholar
  21. [21]
    Shao, M. H.; Peles, A.; Shoemaker, K. Electrocatalysis on platinum nanoparticles: Particle size effect on oxygen reduction reaction activity. Nano Lett. 2011, 11, 3714–3719.CrossRefGoogle Scholar
  22. [22]
    Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.CrossRefGoogle Scholar
  23. [23]
    Gan, L.; Rudi, S.; Cui, C. H.; Heggen, M.; Strasser, P. Sizecontrolled synthesis of sub-10 nm PtNi3 alloy nanoparticles and their unusual volcano-shaped size effect on ORR electrocatalysis. Small 2016, 12, 3189–3196.CrossRefGoogle Scholar
  24. [24]
    Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650.CrossRefGoogle Scholar
  25. [25]
    Li, J.; Li, X.; Zhai, H. J.; Wang, L. S. Au20: A tetrahedral cluster. Science 2003, 299, 864–867.CrossRefGoogle Scholar
  26. [26]
    Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.CrossRefGoogle Scholar
  27. [27]
    Chen, M.; Wu, B. H.; Yang, J.; Zheng, N. F. Small adsorbateassisted shape control of Pd and Pt nanocrystals. Adv. Mater. 2012, 24, 862–879.CrossRefGoogle Scholar
  28. [28]
    Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.CrossRefGoogle Scholar
  29. [29]
    Bai, J.; Fang, C. L.; Liu, Z. H.; Chen, Y. A one-pot gold seed-assisted synthesis of gold/platinum wire nanoassemblies and their enhanced electrocatalytic activity for the oxidation of oxalic acid. Nanoscale 2016, 8, 2875–2880.CrossRefGoogle Scholar
  30. [30]
    Fu, G. T.; Xia, B. Y.; Ma, R. G.; Chen, Y.; Tang, Y. W.; Lee, J. M. Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy 2015, 12, 824–832.CrossRefGoogle Scholar
  31. [31]
    Gong, M. X.; Li, F. M.; Yao, Z. G.; Zhang, S. Q.; Dong, J. W.; Chen, Y.; Tang, Y. W. Highly active and durable platinum-lead bimetallic alloy nanoflowers for formic acid electrooxidation. Nanoscale 2015, 7, 4894–4899.CrossRefGoogle Scholar
  32. [32]
    Li, F. M.; Kang, Y. Q.; Peng, R. L.; Li, S. N.; Xia, B. Y.; Liu, Z. H.; Chen, Y. Sandwich-structured Au@polyallylamine@Pd nanostructures: Tuning the electronic properties of the Pd shell for electrocatalysis. J. Mater. Chem. A 2016, 4, 12020–12024.CrossRefGoogle Scholar
  33. [33]
    Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.CrossRefGoogle Scholar
  34. [34]
    Liu, X. W.; Wang, D. S.; Li, Y. D. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nanotoday 2012, 7, 448–466.CrossRefGoogle Scholar
  35. [35]
    Porter, N. S.; Wu, H.; Quan, Z. W.; Fang, J. Y. Shapecontrol and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 2013, 46, 1867–1877.CrossRefGoogle Scholar
  36. [36]
    Zhang, H.; Jin, M. S.; Xia, Y. N. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 2012, 41, 8035–8049.CrossRefGoogle Scholar
  37. [37]
    Tan, L. Y.; Li, L. D.; Peng, Y.; Guo, L. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction. Nanotechnology 2015, 26, 505401.CrossRefGoogle Scholar
  38. [38]
    Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721.CrossRefGoogle Scholar
  39. [39]
    Xia, B. Y.; Wu, H. B.; Yan, Y.; Lou, X. W.; Wang, X. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 2013, 135, 9480–9485.CrossRefGoogle Scholar
  40. [40]
    Iyyamperumal, R.; Zhang, L.; Henkelman, G.; Crooks, R. M. Efficient electrocatalytic oxidation of formic acid using Au@Pt dendrimer-encapsulated nanoparticles. J. Am. Chem. Soc. 2013, 135, 5521–5524.CrossRefGoogle Scholar
  41. [41]
    Devivaraprasad, R.; Ramesh, R.; Naresh, N.; Kar, T.; Singh, R. K.; Neergat, M. Oxygen reduction reaction and peroxide generation on shape-controlled and polycrystalline platinum nanoparticles in acidic and alkaline electrolytes. Langmuir 2014, 30, 8995–9006.CrossRefGoogle Scholar
  42. [42]
    Higgins, D. C.; Wang, R. Y.; Hoque, M. A.; Zamani, P.; Abureden, S.; Chen, Z. W. Morphology and composition controlled platinum-cobalt alloy nanowires prepared by electrospinning as oxygen reduction catalyst. Nano Energy 2014, 10, 135–143.CrossRefGoogle Scholar
  43. [43]
    Nogami, M.; Koike, R.; Jalem, R.; Kawamura, G.; Yang, Y.; Sasaki, Y. Synthesis of porous single-crystalline platinum nanocubes composed of nanoparticles. J. Phys. Chem. Lett. 2010, 1, 568–571.CrossRefGoogle Scholar
  44. [44]
    Yin, J.; Wang, J. H.; Li, M. R.; Jin, C. Z.; Zhang, T. Iodine ions mediated formation of monomorphic single-crystalline platinum nanoflowers. Chem. Mater. 2012, 24, 2645–2654.CrossRefGoogle Scholar
  45. [45]
    Eustis, S.; El-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217.CrossRefGoogle Scholar
  46. [46]
    Schrinner, M.; Ballauff, M.; Talmon, Y.; Kauffmann, Y.; Thun, J.; Möller, M.; Breu, J. Single nanocrystals of platinum prepared by partial dissolution of Au-Pt nanoalloys. Science 2009, 323, 617–620.CrossRefGoogle Scholar
  47. [47]
    García-Negrete, C. A.; Rojas, T. C.; Knappett, B. R.; Jefferson, D. A.; Wheatley, A. E. H.; Fernandez, A. Shapedefined nanodimers by tailored heterometallic epitaxy. Nanoscale 2014, 6, 11090–11097.CrossRefGoogle Scholar
  48. [48]
    Wang, D. S.; Li, Y. D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280–6281.CrossRefGoogle Scholar
  49. [49]
    Lee, J.; Oh, I.; Hwang, S.; Kwak, J. Scanning tunneling microscopy investigation of silver deposition upon Au(111) in the presence of chloride. Langmuir 2002, 18, 8025–8032.CrossRefGoogle Scholar
  50. [50]
    Li, L. D.; Peng, Y.; Yue, Y. H.; Hu, Y.; Liang, X.; Yin, P. G.; Guo, L. Synthesis of concave gold nanocuboids with high-index facets and their enhanced catalytic activity. Chem. Commun. 2015, 51, 11591–11594.CrossRefGoogle Scholar
  51. [51]
    Wang, L.; Yamauchi, Y. Autoprogrammed synthesis of triple-layered Au@Pd@Pt core–shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell. J. Am. Chem. Soc. 2010, 132, 13636–13638.CrossRefGoogle Scholar
  52. [52]
    Personick, M. L.; Langille, M. R.; Zhang, J.; Mirkin, C. A. Shape control of gold nanoparticles by silver underpotential deposition. Nano Lett. 2011, 11, 3394–3398.CrossRefGoogle Scholar
  53. [53]
    Wanjala, B. N.; Luo, J.; Loukrakpam, R.; Fang, B.; Mott, D.; Njoki, P. N.; Engelhard, M.; Naslund, H. R.; Wu, J. K.; Wang, L. C. et al. Nanoscale alloying, phase-segregation, and core–shell evolution of gold-platinum nanoparticles and their electrocatalytic effect on oxygen reduction reaction. Chem. Mater. 2010, 22, 4282–4294.CrossRefGoogle Scholar
  54. [54]
    Chen, S. G.; Wei, Z. D.; Qi, X. Q.; Dong, L. C.; Guo, Y. G.; Wan, L. J.; Shao, Z. G.; Li, L. Nanostructured polyanilinedecorated Pt/C@PANI core–shell catalyst with enhanced durability and activity. J. Am. Chem. Soc. 2012, 134, 13252–13255.CrossRefGoogle Scholar
  55. [55]
    Yang, J.; Ying, J. Y. Nanocomposites of Ag2S and noble metals. Angew. Chem., Int. Ed. 2011, 50, 4637–4643.CrossRefGoogle Scholar
  56. [56]
    Wu, Y.; Wang, D. S.; Chen, X. B.; Zhou, G.; Yu, R.; Li, Y. D. Defect-dominated shape recovery of nanocrystals: A new strategy for trimetallic catalysts. J. Am. Chem. Soc. 2013, 135, 12220–12223.CrossRefGoogle Scholar
  57. [57]
    Wu, J. B.; Qi, L.; You, H. J.; Gross, A.; Li, J.; Yang, H. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 2012, 134, 11880–11883.CrossRefGoogle Scholar
  58. [58]
    Ilayaraja, N.; Prabu, N.; Lakshminarasimhan, N.; Murugan, P.; Jeyakumar, D. Au-Pt graded nano-alloy formation and its manifestation in small organics oxidation reaction. J. Mater. Chem. A 2013, 1, 4048–4056.CrossRefGoogle Scholar
  59. [59]
    Fennell, J.; He, D. S.; Tanyi, A. M.; Logsdail, A. J.; Johnston, R. L.; Li, Z. Y.; Horswell, S. L. A selective blocking method to control the overgrowth of Pt on Au nanorods. J. Am. Chem. Soc. 2013, 135, 6554–6561.CrossRefGoogle Scholar
  60. [60]
    Peng, Z. M.; Yang, H. PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Res. 2009, 2, 406–415.CrossRefGoogle Scholar
  61. [61]
    Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Kinetics and mechanism of the electrooxidation of formic acid— Spectroelectrochemical studies in a flow cell. Angew. Chem., Int. Ed. 2006, 45, 981–985.CrossRefGoogle Scholar
  62. [62]
    Ge, X. B.; Yan, X. L.; Wang, R. Y.; Tian, F.; Ding, Y. Tailoring the structure and property of Pt-decorated nanoporous gold by thermal annealing. J. Phys. Chem. C 2009, 113, 7379–7384.CrossRefGoogle Scholar
  63. [63]
    Kristian, N.; Yan, Y. S.; Wang, X. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. Chem. Commun. 2008, 353–355.Google Scholar
  64. [64]
    Zhang, D. F.; Li, J.; Kang, J. X.; Chen, T. W.; Zhang, Y.; Wang, L. L.; Guo, L. From Pt-rich dendrites to Ni-rich cuboctahedrons: Structural evolution and electrocatalytic property studies. CrystEngComm 2014, 16, 5331–5337.CrossRefGoogle Scholar
  65. [65]
    Xu, J. F.; Liu, X. Y.; Chen, Y.; Zhou, Y. M.; Lu, T. H.; Tang, Y. W. Platinum-cobalt alloy networks for methanol oxidation electrocatalysis. J. Mater. Chem. 2012, 22, 23659–23667.CrossRefGoogle Scholar
  66. [66]
    Zhang, B. W.; Zhang, Z. C.; Liao, H. G.; Gong, Y.; Gu, L.; Qu, X. M.; You, L. X.; Liu, S.; Huang, L.; Tian, X. C. et al. Tuning Pt-skin to Ni-rich surface of Pt3Ni catalysts supported on porous carbon for enhanced oxygen reduction reaction and formic electro-oxidation. Nano Energy 2016, 19, 198–209.CrossRefGoogle Scholar
  67. [67]
    Kim, B. J.; Kwon, K.; Rhee, C. K.; Han, J.; Lim, T. H. Modification of Pt nanoelectrodes dispersed on carbon support using irreversible adsorption of Bi to enhance formic acid oxidation. Electrochim. Acta 2008, 53, 7744–7750.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and EnvironmentBeihang UniversityBeijingChina
  2. 2.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta CruzUSA

Personalised recommendations