Building 2D quasicrystals from 5-fold symmetric corannulene molecules

  • Nataliya Kalashnyk
  • Julian Ledieu
  • Émilie Gaudry
  • Can Cui
  • An-Pang Tsai
  • Vincent Fournée
Research Article

Abstract

The formation of long-range ordered aperiodic molecular films on quasicrystalline substrates is a new challenge that provides an opportunity for further surface functionalization. This aim can be realized through the smart selection of molecular building blocks, based on symmetry-matching between the underlying quasicrystal and individual molecules. It was previously found that the geometric registry between the C60 molecules and the 5- and 10-fold surfaces was key to the growth of quasiperiodic organic layers. However, an attempt to form a quasiperiodic C60 network on i-Ag-In-Yb substrates was unsuccessful, resulting in disordered molecular films. Here we report the growth of 5-fold symmetric corannulene C20H10 molecules on the 5-fold surfaces of i-Ag-In-Yb quasicrystals. Low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) revealed long-range quasiperiodic order and 5-fold rotational symmetry in self-assembled corannulene films. Recurrent decagonal molecular rings were seen, resulting from the decoration of specific adsorption sites with local pentagonal symmetry by corannulenes, adsorbed with their bowl-openings pointing away from the surface. They were identified as (Ag, In)-containing rhombic triacontahedral (RTH) cluster centers and pentagonal Yb motifs, which cannot be occupied simultaneously due to steric hindrance. It is proposed that symmetry-matching between the molecule and specific substrate sites drives this organization. Alteration of the molecular rim by the introduction of CH substituents appeared to increase molecule mobility on the potential energy surface and facilitate trapping at these specific sites. This finding suggests that rational selection of molecular moiety enables the templated self-assembly of molecules leading to an ordered aperiodic corannulene layer.

Keywords

quasicrystal surface science 5-fold symmetry molecular self-assembly corannulene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1830_MOESM1_ESM.pdf (717 kb)
Building 2D quasicrystals from 5-fold symmetric corannulene molecules

References

  1. [1]
    Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 1984, 53, 1951–1953.CrossRefGoogle Scholar
  2. [2]
    Dubois, J. M. Properties- and applications of quasicrystals and complex metallic alloys. Chem. Soc. Rev. 2012, 41, 6760–6777.CrossRefGoogle Scholar
  3. [3]
    Janot, C. Quasicrystals: A Primer; 2nd ed. Oxford University Press: Oxford, 2012.Google Scholar
  4. [4]
    Steurer, W.; Deloudi, S. Crystallography of Quasicrystals: Concepts, Methods and Structures; Springer: Berlin, Heidelberg, 2009.Google Scholar
  5. [5]
    Zeng, X. B.; Ungar, G.; Liu, Y. S.; Percec, V.; Dulcey, A. E.; Hobbs, J. K. Supramolecular dendritic liquid quasicrystals. Nature 2004, 428, 157–160.CrossRefGoogle Scholar
  6. [6]
    Talapin, D. V.; Shevchenko, E. V.; Bordnarchuk, M. I.; Ye, X. C.; Chen, J.; Murray, C. B. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 2009, 461, 964–967.CrossRefGoogle Scholar
  7. [7]
    Förster, S.; Meinel, K.; Hammer, R.; Trautmann, M.; Widdra, W. Quasicrystalline structure formation in a classical crystalline thin-film system. Nature 2013, 502, 215–218.CrossRefGoogle Scholar
  8. [8]
    Ecija, D.; Urgel, J. I.; Papageorgiou, A. C.; Joshi, S.; Auwärter, W.; Seitsonen, A. P.; Klyatskaya, S.; Ruben, M.; Fischer, S.; Vijayaraghavan, S. et al. Five-vertex Archimedean surface tessellation by lanthanide-directed molecular selfassembly. Proc. Natl. Acad. Sci. USA 2013, 110, 6678–6681.CrossRefGoogle Scholar
  9. [9]
    Urgel, J. I.; Ecija, D.; Auwärter, W.; Papageorgiou, A. C.; Seitsonen, A. P.; Vijayaraghavan, S.; Joshi, S.; Fischer, S.; Reichter, J.; Barth, J. V. Five-vertex lanthanide coordination on surfaces: a route to sophisticated nanoarchitectures and tessellations. J. Phys. Chem. C 2014, 118, 12908–12915.CrossRefGoogle Scholar
  10. [10]
    Urgel, J. I.; Écija, D.; Lyu, G. Q.; Palma, C. A.; Auwärter, W.; Lin, N.; Barth, J. V. Quasicrystallinity expressed in two-dimensional coordination networks. Nat. Chem. 2016, 8, 657–662.CrossRefGoogle Scholar
  11. [11]
    Wasio, N. A.; Quardokus, R. C.; Forrest, R. P.; Lent, C. S.; Corcelli, S. A.; Christie, J. A.; Henderson, K. W.; Kandel, S. A. Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature 2014, 507, 86–89.CrossRefGoogle Scholar
  12. [12]
    Li, X.; Kang, F. Y.; Inagaki, M. Buckybowls: Corannulene and its derivatives. Small 2016, 12, 3206–3223.CrossRefGoogle Scholar
  13. [13]
    Parschau, M.; Fasel, R.; Ernst, K. H.; Gröning, O.; Brandenberger, L.; Schillinger, R.; Greber, T.; Seitsonen, A. P.; Wu, Y. T.; Siegel, J. S. Buckybowls on metal surfaces: Symmetry mismatch and enantiomorphism of corannulene on Cu(110). Angew. Chem., Int. Ed. 2007, 46, 8258–8261.CrossRefGoogle Scholar
  14. [14]
    Bauert, T.; Merz, L.; Bandera, D.; Parschau, M.; Siegel, J. S.; Ernst, K. H. Building 2D crystals from 5-fold-symmetric molecules. J. Am. Chem. Soc. 2009, 131, 3460–3461.CrossRefGoogle Scholar
  15. [15]
    Guillermet, O.; Niemi, E.; Nagarajan, S.; Bouju, X.; Martrou, D.; Gourdon, A.; Gauthier, S. Self-assembly of five-fold-symmetric molecules on a threefold-symmetric surface. Angew. Chem., Int. Ed. 2009, 48, 1970–1973.CrossRefGoogle Scholar
  16. [16]
    Bauert, T.; Baldridge, K. K.; Siegel, J. S.; Ernst K. H. Surface-assisted bowl-in-bowl stacking of nonplanar aromatic hydrocarbons. Chem. Commun. 2011, 47, 7995–7997.CrossRefGoogle Scholar
  17. [17]
    Bauert, T.; Zoppi, L.; Koller, G.; Siegel, J. S.; Baldridge, K. K.; Ernst, K. H. Quadruple anionic buckybowls by solid-state chemistry of corannulene and cesium. J. Am. Chem. Soc. 2013, 135, 12857–12860.CrossRefGoogle Scholar
  18. [18]
    Smerdon, J. A.; Young, K. M.; Lowe, M.; Hars, S. S.; Yadav, T. P.; Hesp, D.; Dhanak, V. R.; Tsai, A. P.; Sharma, H. R.; McGrath, R. Templated quasicrystalline molecular ordering. Nano Lett. 2014, 14, 1184–1189.CrossRefGoogle Scholar
  19. [19]
    Fournée, V.; Gaudry, É.; Ledieu, J.; de Weerd, M. C.; Wu, D. M.; Lograsso, T. Self-organized molecular films with long-range quasiperiodic order. ACS Nano 2014, 8, 3646–3653.CrossRefGoogle Scholar
  20. [20]
    Nugent, P. J.; Smerdon, J. A.; McGrath, R.; Shimoda, M.; Cui, C.; Tsai, A. P.; Sharma, H. R. Step-terrace morphology and reactivity to C60 of the five-fold icosahedral Ag–In–Yb quasicrystal. Philos. Mag. 2011, 91, 2862–2869.CrossRefGoogle Scholar
  21. [21]
    Sharma, H. R.; Shimoda, M.; Sagisaka, K.; Takakura, H.; Smerdon, J. A.; Nugent, P. J.; McGrath, R.; Fujita, D.; Ohhashi, S.; Tsai, A. P. Structure of the fivefold surface of the Ag-In-Yb icosahedral quasicrystal. Phys. Rev. B. 2009, 80, 121401.CrossRefGoogle Scholar
  22. [22]
    Takakura, H.; Gómez, C. P.; Yamamoto, A.; de Boissieu, M.; Tsai, A. P. Atomic structure of the binary icosahedral Yb–Cd quasicrystal. Nat. Mater. 2007, 6, 58–63.CrossRefGoogle Scholar
  23. [23]
    Ledieu, J.; Muryn, C. A.; Thornton, G.; Diehl, R. D.; Lograsso, T. A.; Delaney, D. W.; McGrath, R. C60 adsorption on the quasicrystalline surface of Al70Pd21Mn9. Surf. Sci. 2001, 472, 89–96.CrossRefGoogle Scholar
  24. [24]
    Cox, E. J.; Ledieu, J.; Dhanak, V. R.; Barrett, S. D.; Jenks, C. J.; Fisher, I.; McGrath, R. An STM and SXPS study of the interaction of C60 with the ten-fold surface of the Al72Ni11Co17 quasicrystal. Surf. Sci. 2004, 566–568, 1200–1205.CrossRefGoogle Scholar
  25. [25]
    Socolar, J. E. S.; Steinhardt, P. J. Quasicrystals. II. Unit-cell configurations. Phys. Rev. B 1986, 34, 617–647.CrossRefGoogle Scholar
  26. [26]
    Nozawa, K.; Ishii, Y. Theoretical studies on clean and adsorbed surfaces of Ag-In-Yb. Philos. Mag. 2011, 91, 2913–2919.CrossRefGoogle Scholar
  27. [27]
    Cui, C.; Tsai, A. P. Growth of large single-grain quasicrystals in the Ag–In–Yb system by Bridgman method. J. Crystal Growth 2009, 312, 131–135.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Nataliya Kalashnyk
    • 1
  • Julian Ledieu
    • 1
  • Émilie Gaudry
    • 1
  • Can Cui
    • 2
  • An-Pang Tsai
    • 3
  • Vincent Fournée
    • 1
  1. 1.Institut Jean Lamour UMR 7198 CNRSUniversité de Lorraine Campus ARTEMNancyFrance
  2. 2.Department of PhysicsZhejiang Sci-Tech UniversityHangzhouChina
  3. 3.Institute of Multidisciplinary Research for Advanced Materials (IMRAM)Tohoku UniversitySendaiJapan

Personalised recommendations