Advertisement

A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring

Abstract

Strain sensors with high stretchability, broad strain range, high sensitivity, and good reliability are desirable, owing to their promising applications in electronic skins and human motion monitoring systems. In this paper, we report a high-performance strain sensor based on printable and stretchable electrically conductive elastic composites. This strain sensor is fabricated by mixing silver-coated polystyrene spheres (PS@Ag) and liquid polydimethylsiloxane (PDMS) and screen-printed to a desirable geometry. The strain sensor exhibits fascinating comprehensive performances, including high electrical conductivity (1.65 × 104 S/m), large workable strain range (> 80%), high sensitivity (gauge factor of 17.5 in strain of 0%–10%, 6.0 in strain of 10%–60% and 78.6 in strain of 60%–80%), inconspicuous resistance overshoot (< 15%), good reproducibility and excellent long-term stability (1,750 h at 85 °C/85% relative humidity) for PS@Ag/PDMS-60, which only contains ∼ 36.7 wt.% of silver. Simultaneously, this strain sensor provides the advantages of low-cost, simple, and large-area scalable fabrication, as well as robust mechanical properties and versatility in applications. Based on these performance characteristics, its applications in flexible printed electrodes and monitoring vigorous human motions are demonstrated, revealing its tremendous potential for applications in flexible and wearable electronics.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. [1]

    Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. A rubberlike stretchable active matrix using elastic conductors. Science 2008, 321, 1468–1472.

  2. [2]

    Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 8, 494–499.

  3. [3]

    Mates, J. E.; Bayer, I. S.; Palumbo, J. M.; Carroll, P. J.; Megaridis, C. M. Extremely stretchable and conductive water-repellent coatings for low-cost ultra-flexible electronics. Nat. Commun. 2015, 6, 8874.

  4. [4]

    Shi, J. D.; Li, X. M.; Cheng, H. Y.; Liu, Z. J.; Zhao, L. Y.; Yang, T. T.; Dai, Z. H.; Cheng, Z. G.; Shi, E. Z.; Yang, L. et al. Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv. Funct. Mater. 2016, 26, 2078–2084.

  5. [5]

    Oh, J. Y.; Kim, S.; Baik, H. K.; Jeong, U. Conducting polymer dough for deformable electronics. Adv. Mater. 2016, 28, 4455–4461.

  6. [6]

    Roh, E.; Hwang, B.-U.; Kim, D.; Kim, B.-Y.; Lee, N.-E. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 2015, 9, 6252–6261.

  7. [7]

    Wang, Y.; Yang, T. T.; Lao, J. C.; Zhang, R. J.; Zhang, Y. Y.; Zhu, M.; Li, X.; Zhang, X. B.; Wang, K. L.; Yu, W. J. et al. Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition. Nano Res. 2015, 8, 1627–1636.

  8. [8]

    Lee, S.; Shin, S.; Lee, S.; Seo, J.; Lee, J.; Son, S.; Cho, H. J.; Algadi, H.; Al-Sayari, S.; Kim, D. E. et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 2015, 25, 3114–3121.

  9. [9]

    Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

  10. [10]

    Tee, B. C.-K.; Wang, C.; Allen, R.; Bao, Z. N. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 2012, 7, 825–832.

  11. [11]

    You, I.; Kim, B.; Park, J.; Koh, K.; Shin, S.; Jung, S.; Jeong, U. Stretchable e-skin apexcardiogram sensor. Adv. Mater. 2016, 28, 6359–6364.

  12. [12]

    Martinez, R. V.; Branch, J. L.; Fish, C. R.; Jin, L. H.; Shepherd, R. F.; Nunes, R. M. D.; Suo, Z. G.; Whitesides, G. M. Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv. Mater. 2013, 25, 205–212.

  13. [13]

    Matsuhisa, N.; Kaltenbrunner, M.; Yokota, T.; Jinno, H.; Kuribara, K.; Sekitani, T.; Someya, T. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 2015, 6, 7461.

  14. [14]

    Wu, C. X.; Kim, T. W.; Li, F. S.; Guo, T. L. Wearable electricity generators fabricated utilizing transparent electronic textiles based on polyester/Ag nanowires/graphene core–shell nanocomposites. ACS Nano 2016, 10, 6449–6457.

  15. [15]

    Lai, Y. C.; Ye, B. W.; Lu, C. F.; Chen, C. T.; Jao, M. H.; Su, W. F.; Hung, W. Y.; Lin, T. Y.; Chen, Y. F. Extraordinarily sensitive and low-voltage operational cloth-based electronic skin for wearable sensing and multifunctional integration uses: A tactile-induced insulating-to-conducting transition. Adv. Funct. Mater. 2016, 26, 1286–1295.

  16. [16]

    Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi1, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

  17. [17]

    Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

  18. [18]

    Trung, T. Q.; Lee, N.-E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 2016, 28, 4338–4372.

  19. [19]

    Fan, F. R.; Tang, W.; Wang, Z. L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 2016, 28, 4283–4305.

  20. [20]

    Ryu, S.; Lee, P.; Chou, J. B.; Xu, R. Z.; Zhao, R.; Hart, A. J.; Kim, S. G. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 2015, 9, 5929–5936.

  21. [21]

    Yoon, S. G.; Koo, H. J.; Chang, S. T. Highly stretchable and transparent microfluidic strain sensors for monitoring human body motions. ACS Appl. Mater. Interfaces 2015, 7, 27562–27570.

  22. [22]

    Fan, J. A.; Yeo, W. H.; Su, Y. W.; Hattori, Y.; Lee, W.; Jung, S.-Y.; Zhang, Y. H.; Liu, Z. J.; Cheng, H. Y.; Falgout, L. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 2014, 5, 3266.

  23. [23]

    Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163.

  24. [24]

    Song, H. L.; Zhang, J. Q.; Chen, D. B.; Wang, K. J.; Niu, S. C.; Han, Z. W.; Ren, L. Q. Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks. Nanoscale 2017, 9, 1166–1173.

  25. [25]

    Stauffer, D.; Aharony, A. Introduction to Percolation Theory; 2nd ed. London: Taylor and Francis: London, 1992.

  26. [26]

    Weber, M.; Kamal, M. R. Estimation of the volume resistivity of electrically conductive composites. Polym. Compos. 1997, 18, 711–725.

  27. [27]

    Larmagnac, A.; Eggenberger, S.; Janossy, H.; Voros, J. Stretchable electronics based on Ag-PDMS composites. Sci. Rep. 2014, 4, 7254.

  28. [28]

    Hu, G. J.; Zhao, C. G.; Zhang, S. M.; Yang, M. S.; Wang, Z. G. Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer 2006, 47, 480–488.

  29. [29]

    Dorfmann, A.; Ogden, R. W. A constitutive model for the mullins effect with permanent set in particle-reinforced rubber. Int. J. Solids Struct. 2004, 41, 1855–1878.

  30. [30]

    Simmons, J. G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 2581–2590.

  31. [31]

    Chen, L.; Chen, G. H.; Lu, L. Piezoresistive behavior study on finger-sensing silicone rubber/graphite nanosheet nanocomposites. Adv. Funct. Mater. 2007, 17, 898–904.

  32. [32]

    Alamusi; Hu, N.; Fukunaga, H.; Atobe, S.; Liu, Y. L.; Li, J. H. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 2011, 11, 10691–10723.

  33. [33]

    Kong, J. H.; Jang, N. S.; Kim, S. H.; Kim, J. M. Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon 2014, 77, 199–207.

  34. [34]

    Jeon, J. Y.; Ha, T. J. Waterproof electronic-bandage with tunable sensitivity for wearable strain sensors. ACS Appl. Mater. Interfaces 2016, 8, 2866–2871.

  35. [35]

    Takei, K.; Yu, Z. B.; Zheng, M.; Ota, H.; Takahashi, T.; Javey, A. Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proc. Natl. Acad. Sci. USA 2014, 111, 1703–1707.

  36. [36]

    Jang, J.; Im, H. G.; Jin, J.; Lee, J.; Lee, J. Y.; Bae, B. S. A flexible and robust transparent conducting electrode platform using an electroplated silver grid/surface-embedded silver nanowire hybrid structure. ACS Appl. Mater. Interfaces 2016, 8, 27035–27043.

  37. [37]

    Pettersen, S. R.; Kristlansen, H.; Nagao, S.; Helland, S.; Niagi, J.; Suganuma, K.; Zhang, Z. L.; He, J. Y. Contact resistance and metallurgical connections between silver coated polymer particles in isotropic conductive adhesives. J. Electron. Mater. 2016, 45, 3734–3743.

  38. [38]

    Yang, R.; Wang, Y.; Wu, D.; Deng, Y. B.; Luo, Y. Y.; Cui, X. Y.; Wang, X. Y.; Shu, Z. X.; Yang, C. Low-temperature fusible silver micro/nanodendrites-based electrically conductive composites for next-generation printed fuse-links. ACS Nano, 2017, 11, 7710–7718.

  39. [39]

    Park, J. J.; Hyun, W. J.; Mun, S. C.; Park, Y. T.; Park, O. O. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl. Mater. Interfaces 2015, 7, 6317–6324.

  40. [40]

    Jeong, Y. R.; Park, H.; Jin, S. W.; Hong, S. Y.; Lee, S. S.; Ha, J. S. Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater. 2015, 25, 4228–4236.

  41. [41]

    Hu, Y. G.; Zhao, T.; Zhu, P. L.; Zhu, Y.; Shuai, X. T.; Liang, X. W.; Sun, R.; Lu, D. D.; Wong, C. P. Low cost and highly conductive elastic composites for flexible and printable electronics. J. Mater. Chem. C 2016, 4, 5839–5848.

Download references

Acknowledgements

This work was supported by the National Key R&D Project from Minister of Science and Technology of China (No. 2016YFA0202702), National Natural Science Foundation of China (Nos. 61701488 and 21571186), Leading Scientific Research Project of Chinese Academy of Sciences (No. QYZDY-SSW-JSC010), Youth Innovation Promotion Association (No. 2017411), Guangdong Provincial Key Laboratory (No. 2014B030301014), Guangdong TeZhi Plan Youth Talent of Science and Technology (No. 2014TQ01C102), Shenzhen Basic Research plan (Nos. JSGG20150512145714246 and JSGG20160229155249762) and SIAT Innovation Program for Excellent Young Researchers (No. 2016005).

Author information

Correspondence to Pengli Zhu or Rong Sun.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zhao, T., Zhu, P. et al. A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Res. 11, 1938–1955 (2018) doi:10.1007/s12274-017-1811-0

Download citation

Keywords

  • flexible strain sensor
  • printable electronics
  • human motion monitoring
  • conductive elastic composites
  • silver-coated polymer spheres