Advertisement

Nano Research

, Volume 11, Issue 4, pp 1917–1927 | Cite as

Fullerene/cobalt porphyrin charge-transfer cocrystals: Excellent thermal stability and high mobility

  • Shushu Zheng
  • Junwen Zhong
  • Wakana Matsuda
  • Peng Jin
  • Muqing Chen
  • Takeshi Akasaka
  • Kazuhito Tsukagoshi
  • Shu Seki
  • Jun Zhou
  • Xing Lu
Research Article

Abstract

Although organic semiconductors with high mobility and thermal stability are particularly desirable for practical applications, facile methods for their development still remains a big challenge. In this work, a charge-transfer cocrystal based on fullerene (C70)/cobalt porphyrin supramolecular architecture was prepared by a solution-processable co-assembly strategy. This supramolecular architecture showed hole mobility as high as 4.21 cm2·V−1·s−1, and a relatively high mobility of 0.02 cm2·V−1·s−1 even after thermal treatment at 1,000 °C. Further studies confirmed the occurrence of charge-transfer from 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrinato cobalt(II) (CoTMPP) to C70 and the paramagnetic character within the supramolecular system. These factors were found to be responsible for the aforementioned superior performances. Thus, a novel organic semiconductor has been reported in this work, which can be potentially used for next generation electronic devices. Furthermore, it has been demonstrated that charge-transfer co-crystallization is a powerful strategy for the rational design and construction of a broad class of new multifunctional organic co-crystalline materials.

Keywords

organic semiconductor fullerene/porphyrin thermal stability mobility charge-transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Financial support from the National Thousand Talents Program of China, the National Natural Science Foundation of China (Nos. 51472095, 51602112, 51672093 and 21103224), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1014), Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), and Ministry of Education are gratefully acknowledged. This work was partially supported by Japan Society for the Promotion of Science (JSPS) (Nos. JP16F16360, 26102011, 26249145, and 15K21721). We thank the Analytical and Testing Center in Huazhong University of Science and Technology for all related measurements. We also acknowledge Dr. Akihiko Fujiwara and Dr. Kunihisa Sugimoto for single-crystal XRD measurement.

Supplementary material

12274_2017_1809_MOESM1_ESM.pdf (2 mb)
Fullerene/cobalt porphyrin charge-transfer cocrystals: Excellent thermal stability and high mobility

References

  1. [1]
    Giri, G.; Verploegen, E.; Mannsfeld, S. C. B.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 2011, 480, 504–508.CrossRefGoogle Scholar
  2. [2]
    Chen, Y. S.; Xu, Y. F.; Zhao, K.; Wan, X. J.; Deng, J. C.; Yan, W. B. Towards flexible all-carbon electronics: Flexible organic field-effect transistors and inverter circuits using solution-processed all-graphene source/drain/gate electrodes. Nano Res. 2010, 3, 714–721.CrossRefGoogle Scholar
  3. [3]
    Lei, Y. L.; Jin, Y.; Zhou, D. Y.; Gu, W.; Shi, X. B.; Liao, L. S.; Lee, S. T. White-light emitting microtubes of mixed organic charge-transfer complexes. Adv. Mater. 2012, 24, 5345–5351.CrossRefGoogle Scholar
  4. [4]
    Kim, F. S.; Guo, X. G.; Watson, M. D.; Jenekhe, S. A. High-mobility ambipolar transistors and high-gain inverters from a donor-acceptor copolymer semiconductor. Adv. Mater. 2010, 22, 478–482.CrossRefGoogle Scholar
  5. [5]
    Li, Y. J.; Liu, T. F.; Liu, H. B.; Tian, M.-Z.; Li, Y. L. Self-assembly of intramolecular charge-transfer compounds into functional molecular systems. Acc. Chem. Res. 2014, 47, 1186–1198.CrossRefGoogle Scholar
  6. [6]
    Zhu, W. G.; Zheng, R. H.; Fu, X. L.; Fu, H. B.; Shi, Q.; Zhen, Y. G.; Dong, H. L.; Hu, W. P. Revealing the chargetransfer interactions in self-assembled organic cocrystals: Two-dimensional photonic applications. Angew. Chem., Int. Ed. 2015, 54, 6785–6789.CrossRefGoogle Scholar
  7. [7]
    Busseron, E.; Cid, J.-J.; Wolf, A.; Du, G. Y.; Moulin, E.; Fuks, G.; Maaloum, M.; Polavarapu, P.; Ruff, A.; Saur, A.-K. et al. Light-controlled morphologies of self-assembled triarylamine–fullerene conjugates. ACS Nano 2015, 9, 2760–2772.CrossRefGoogle Scholar
  8. [8]
    Wuest, J. D. Molecular solids: Co-crystals give light a tune-up. Nat. Chem. 2012, 4, 74–75.CrossRefGoogle Scholar
  9. [9]
    Jérome, D. Organic conductors: From charge density wave TTF−TCNQ to superconducting (TMTSF)2PF6. Chem. Rev. 2004, 104, 5565–5592.CrossRefGoogle Scholar
  10. [10]
    Qin, W.; Chen, X. M.; Lohrman, J.; Gong, M. G.; Yuan, G. L.; Wuttig, M.; Ren, S. Q. External stimuli controlled multiferroic charge-transfer crystals. Nano Res. 2016, 9, 925–932.CrossRefGoogle Scholar
  11. [11]
    Yang, J.; Heo, M.; Lee, H. J.; Park, S.-M.; Kim, J. Y.; Shin, H. S. Reduced graphene oxide (rGO)-wrapped fullerene (C60) wires. ACS Nano 2011, 5, 8365–8371.CrossRefGoogle Scholar
  12. [12]
    Qin, W.; Chen, X. M.; Li, H. S.; Gong, M. G.; Yuan, G. L.; Grossman, J. C.; Wuttig, M.; Ren, S. Q. Room temperature multiferroicity of charge transfer crystals. ACS Nano 2015, 9, 9373–9379.CrossRefGoogle Scholar
  13. [13]
    Zhang, J.; Tan, J. H.; Ma, Z. Y.; Xu, W.; Zhao, G. Y.; Geng, H.; Di, C. A.; Hu, W. P.; Shuai, Z. G.; Singh, K. et al. Fullerene/sulfur-bridged annulene cocrystals: Two-dimensional segregated heterojunctions with ambipolar transport properties and photoresponsivity. J. Am. Chem. Soc. 2013, 135, 558–561.CrossRefGoogle Scholar
  14. [14]
    Wakahara, T.; D’Angelo, P.; Miyazawa, K. I.; Nemoto, Y.; Ito, O.; Tanigaki, N.; Bradley, D. D. C.; Anthopoulos, T. D. Fullerene/cobalt porphyrin hybrid nanosheets with ambipolar charge transporting characteristics. J. Am. Chem. Soc. 2012, 134, 7204–7206.CrossRefGoogle Scholar
  15. [15]
    Armaroli, N.; Marconi, G.; Echegoyen, L.; Bourgeois, J.-P.; Diederich, F. Charge-transfer interactions in face-to-face porphyrin-fullerene systems: Solvent-dependent luminescence in the infrared spectral region. Chem.—Eur. J. 2000, 6, 1629–1645.CrossRefGoogle Scholar
  16. [16]
    Guldi, D. M. Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem. Soc. Rev. 2002, 31, 22–36.CrossRefGoogle Scholar
  17. [17]
    Yokota, T.; Kuribara, K.; Tokuhara, T.; Zschieschang, U.; Klauk, H.; Takimiya, K.; Sadamitsu, Y.; Hamada, M.; Sekitani, T.; Someya, T. Flexible low-voltage organic transistors with high thermal stability at 250 °C. Adv. Mater. 2013, 25, 3639–3644.CrossRefGoogle Scholar
  18. [18]
    Ling, Q.-D.; Kang, E.-T.; Neoh, K.-G.; Chen, Y.; Zhuang, X.-D.; Zhu, C. X.; Chan, D. S. H. Thermally stable polymer memory devices based on a π-conjugated triad. Appl. Phys. Lett. 2008, 92, 143302.CrossRefGoogle Scholar
  19. [19]
    Qi, Z.; Cao, J. M.; Li, H.; Ding, L. M.; Wang, J. Z. High-performance thermally stable organic phototransistors based on PSeTPTI/PC61BM for visible and ultraviolet photodetection. Adv. Funct. Mater. 2015, 25, 3138–3146.CrossRefGoogle Scholar
  20. [20]
    Saito, M.; Yamamoto, T.; Osaka, I.; Miyazaki, E.; Takimiya, K.; Kuwabara, H.; Ikeda, M. ChemInform abstract: Facile synthesis of [1]benzothieno[3,2-b]benzothiophene from o-dihalostilbenes. ChemInform 2011, 42, DOI: 10.1002/chin.201101086.Google Scholar
  21. [21]
    Kuribara, K.; Wang, H.; Uchiyama, N.; Fukuda, K.; Yokota, T.; Zschieschang, U.; Jaye, C.; Fischer, D.; Klauk, H.; Yamamoto, T. et al. Organic transistors with high thermal stability for medical applications. Nat. Commun. 2012, 3, 723.CrossRefGoogle Scholar
  22. [22]
    Salim, T.; Lee, H.-W.; Wong, L. H.; Oh, J. H.; Bao, Z. A.; Lam, Y. M. Semiconducting carbon nanotubes for improved efficiency and thermal stability of polymer–fullerene solar cells. Adv. Funct. Mater. 2016, 26, 51–65.CrossRefGoogle Scholar
  23. [23]
    Abe, M.; Mori, T.; Osaka, I.; Sugimoto, K.; Takimiya, K. Thermally, operationally, and environmentally stable organic thin-film transistors based on bis[1]benzothieno[2,3-d:2′,3′ -d′]naphtho[2,3-b:6,7-b′]dithiophene derivatives: Effective synthesis, electronic structures, and structure–property relationship. Chem. Mater. 2015, 27, 5049–5057.CrossRefGoogle Scholar
  24. [24]
    Zheng, S. S.; Lu, X. Formation kinetics and photoelectrochemical properties of crystalline C70 one-dimensional microstructures. RSC Adv. 2015, 5, 38202–38208.CrossRefGoogle Scholar
  25. [25]
    Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241.CrossRefGoogle Scholar
  26. [26]
    Schwerdtfeger, P.; Dolg, M.; Schwarz, W. H. E.; Bowmaker, G. A.; Boyd, P. D. W. Relativistic effects in gold chemistry. I. Diatomic gold compounds. J. Chem. Phys. 1989, 91, 1762–1774.CrossRefGoogle Scholar
  27. [27]
    Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theoret. Chim. Acta 1990, 77, 123–141.CrossRefGoogle Scholar
  28. [28]
    Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 1993, 80, 1431–1441.CrossRefGoogle Scholar
  29. [29]
    Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257–2261.CrossRefGoogle Scholar
  30. [30]
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.et al .Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2016.Google Scholar
  31. [31]
    Miyazawa, K.; Kuwasaki, Y.; Obayashi, A.; Kuwabara, M. C60 nanowhiskers formed by the liquid–liquid interfacial precipitation method. J. Mater. Res. 2002, 17, 83–88.CrossRefGoogle Scholar
  32. [32]
    Hasobe, T.; Sandanayaka, A. S. D.; Wada, T.; Araki, Y. Fullerene-encapsulated porphyrin hexagonal nanorods. An anisotropic donor-acceptor composite for efficient photoinduced electron transfer and light energy conversion. Chem. Commun. 2008, 3372–3374.Google Scholar
  33. [33]
    Konarev, D. V.; Kovalevsky, A. Y.; Li, X.; Neretin, I. S.; Litvinov, A. L.; Drichko, N. Y. V.; Slovokhotov, Y. L.; Coppens, P.; Lyubovskaya, R. N. Synthesis and structure of multicomponent crystals of fullerenes and metal tetraarylporphyrins. Inorg. Chem. 2002, 41, 3638–3646.CrossRefGoogle Scholar
  34. [34]
    Herrmann, I.; Kramm, U. I.; Fiechter, S.; Bogdanoff, P. Oxalate supported pyrolysis of CoTMPP as electrocatalysts for the oxygen reduction reaction. Electrochim. Acta 2009, 54, 4275–4287.CrossRefGoogle Scholar
  35. [35]
    Herrmann, I.; Kramm, U. I.; Fiechter, S.; Brüser, V.; Kersten, H.; Bogdanoff, P. Comparative study of the carbonisation of CoTMPP by low temperature plasma and heat treatment. Plasma Process. Polym. 2010, 7, 515–526.CrossRefGoogle Scholar
  36. [36]
    Céolin, R.; Tamarit, J. L.; Barrio, M.; López, D. O.; Toscani, S.; Allouchi, H.; Agafonov, V.; Szwarc, H. Solid-state studies on a cubic 1:1 solvate of C60 grown from dichloromethane and leading to another hexagonal C60 polymorph. Chem. Mater. 2001, 13, 1349–1355.CrossRefGoogle Scholar
  37. [37]
    Zheng, S. S.; Xu, M. L.; Lu, X. Facile method toward hierarchical fullerene architectures with enhanced hydrophobicity and photoluminescence. ACS Appl. Mater. Interfaces 2015, 7, 20285–20291.CrossRefGoogle Scholar
  38. [38]
    Li, C. Z.; Chueh, C. C.; Yip, H. L.; Ding, F. Z.; Li, X. S.; Jen, A. K. Y. Solution-processible highly conducting fullerenes. Adv. Mater. 2013, 25, 2457–2461.CrossRefGoogle Scholar
  39. [39]
    Ji, H. X.; Hu, J. S.; Wan, L. J.; Tang, Q. X.; Hu, W. P. Controllable crystalline structure of fullerene nanorods and transport properties of an individual nanorod. J. Mater. Chem. 2008, 18, 328–332.CrossRefGoogle Scholar
  40. [40]
    Sato, S.; Seki, S.; Luo, G. F.; Suzuki, M.; Lu, J.; Nagase, S.; Akasaka, T. Tunable charge-transport properties of Ih- C80endohedral metallofullerenes: Investigation of La2@C80, Sc3N@C80, and Sc3C2@C80. J. Am. Chem. Soc. 2012, 134, 11681–11686.CrossRefGoogle Scholar
  41. [41]
    Barnes, J. C.; Dale, E. J.; Prokofjevs, A.; Narayanan, A.; Gibbs-Hall, I. C.; Juríček, M.; Stern, C. L.; Sarjeant, A. A.; Botros, Y. Y.; Stupp, S. I. et al. Semiconducting single crystals comprising segregated arrays of complexes of C60. J. Am. Chem. Soc. 2015, 137, 2392–2399.CrossRefGoogle Scholar
  42. [42]
    Guo, Y. G.; Li, C. J.; Wan, L. J.; Chen, D. M.; Wang, C. R.; Bai, C. L.; Wang, Y. G. Well-defined fullerene nanowire arrays. Adv. Funct. Mater. 2003, 13, 626–630.CrossRefGoogle Scholar
  43. [43]
    Li, H. Y.; Tee, B. C. K.; Cha, J. J.; Cui, Y.; Chung, J. W.; Lee, S. Y.; Bao, Z. A. High-mobility field-effect transistors from large-area solution-grown aligned C60single crystals. J. Am. Chem. Soc. Google Scholar
  44. [44]
    Fajer, J.; Borg, D. C.; Forman, A.; Dolphin, D.; Felton, R. H..pi.-Cation radicals and dications of metalloporphyrins. J. Am. Chem. Soc. 1970, 92, 3451–3459.CrossRefGoogle Scholar
  45. [45]
    Sato, S.; Nikawa, H.; Seki, S.; Wang, L.; Luo, G. F.; Lu, J.; Haranaka, M.; Tsuchiya, T.; Nagase, S.; Akasaka, T. A co-crystal composed of the paramagnetic endohedral metallofullerene La@C82 and a nickel porphyrin with high electron mobility. Angew. Chem., Int. Ed. 2012, 51, 1589–1591.CrossRefGoogle Scholar
  46. [46]
    Boyd, P. D. W.; Reed, C. A. Fullerene−porphyrin constructs. Acc. Chem. Res. 2005, 38, 235–242.CrossRefGoogle Scholar
  47. [47]
    Ren, J.; Meng, S.; Kaxiras, E. Theoretical investigation of the C60/copper phthalocyanine organic photovoltaic heterojunction. Nano Res. 2012, 5, 248–257.CrossRefGoogle Scholar
  48. [48]
    Goetz, K. P.; Vermeulen, D.; Payne, M. E.; Kloc, C.; McNeil, L. E.; Jurchescu, O. D. Charge-transfer complexes: New perspectives on an old class of compounds. J. Mater. Chem. C 2014, 2, 3065–3076.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and EngineeringHuazhong University of Science and Technology (HUST)WuhanChina
  2. 2.Department of Molecular Engineering, Graduate School of EngineeringKyoto UniversityKyotoJapan
  3. 3.International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS)Tsukuba, IbarakiJapan
  4. 4.Wuhan National Laboratory for Optoelectronics and College of Optoelectronic Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
  5. 5.School of Materials Science and EngineeringHebei University of TechnologyTianjinChina

Personalised recommendations