Advertisement

Nano Research

, Volume 11, Issue 4, pp 1810–1821 | Cite as

Light-powered direction-controlled micropump

  • Mingtong Li
  • Yajun Su
  • Hui Zhang
  • Bin DongEmail author
Research Article

Abstract

A micropump induces the flow of its surrounding fluids and is extremely promising in a variety of applications such as chemical sensing or mass transportation. However, it is still challenging to manipulate its pumping direction. In this study, we examine a binary micropump based on perovskite and poly[(2-methoxy-5-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV). The micropump is operational under the influence of light. Light exhibits significant versatility in controlling the pumping phenomenon of the micropump. It governs the start and stop and also regulates the velocity and directions. The direction control signifies immense opportunities for the development of micropumps with unprecedented pumping behaviors and functions (such as heartbeat-like pumping, rectification, and amplification). This makes them potentially useful in various fields. Hence, it is expected that the micropump reported in the current study could act as a key step towards the further development of more sophisticated micropumps for diverse applications.

Keywords

micropump light powered density-driven thermal effect direction control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 21574094), the Natural Science Foundation of Jiangsu Province (No. BK20150314) and Collaborative Innovation Center (CIC) of Suzhou Nano Science. It is also supported by the 111 Project and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Fund for Excellent Creative Research Teams of Jiangsu Higher Education Institutions and the project-sponsored by SRF for ROCS, SEM.

Supplementary material

Supplementary material, approximately 445 KB.

12274_2017_1799_MOESM2_ESM.avi (7.1 mb)
Supplementary material, approximately 7.11 MB.

Supplementary material, approximately 1.05 MB.

Supplementary material, approximately 383 KB.

Supplementary material, approximately 8.16 MB.

Supplementary material, approximately 9.30 MB.

Supplementary material, approximately 6.69 MB.

12274_2017_1799_MOESM8_ESM.avi (18.2 mb)
Supplementary material, approximately 18.1 MB.

Supplementary material, approximately 1.55 MB.

12274_2017_1799_MOESM10_ESM.avi (21.8 mb)
Supplementary material, approximately 21.7 MB.

Supplementary material, approximately 542 KB.

Supplementary material, approximately 1.75 MB.

12274_2017_1799_MOESM13_ESM.pdf (1.5 mb)
Light-powered direction-controlled micropump
12274_2017_1799_MOESM14_ESM.pdf (337 kb)
Table of contents

References

  1. [1]
    Ma, X.; Wang, X.; Hahn, K.; Sánchez, S. Motion control of urea-powered biocompatible hollow microcapsules. Acs Nano 2016, 10, 3597–3605.CrossRefGoogle Scholar
  2. [2]
    Xuan, M. J.; Wu, Z. G.; Shao, J. X.; Dai, L. R.; Si, T. Y.; He, Q. Near infrared light-powered janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 2016, 138, 6492–6497.CrossRefGoogle Scholar
  3. [3]
    Wu, Z. G.; Lin, X. K.; Wu, Y. J.; Si, T. Y.; Sun, J. M.; He, Q. Near-infrared light-triggered “on/off” motion of polymer multilayer rockets. ACS Nano 2014, 8, 6097–6105.CrossRefGoogle Scholar
  4. [4]
    Li, J. X.; Liu, W. J.; Li, T. L.; Rozen, I.; Zhao, J.; Bahari, B.; Kante, B.; Wang, J. Swimming microrobot optical nanoscopy. Nano Lett. 2016, 16, 6604–6609.CrossRefGoogle Scholar
  5. [5]
    Mayorga-Martinez, C. C.; Moo, J. G. S.; Khezri, B.; Song, P.; Fisher, A. C.; Sofer, Z.; Pumera, M. Self-propelled supercapacitors for on-demand circuit configuration based on WS2 nanoparticles micromachines. Adv. Funct. Mater. 2016, 26, 6662–6667.CrossRefGoogle Scholar
  6. [6]
    Srivastava, S. K.; Guix, M.; Schmidt, O. G. Wastewater mediated activation of micromotors for efficient water cleaning. Nano Lett. 2016, 16, 817–821.CrossRefGoogle Scholar
  7. [7]
    Simmchen, J.; Katuri, J.; Uspal, W. E.; Popescu, M. N.; Tasinkevych, M.; Sánchez, S. Topographical pathways guide chemical microswimmers. Nat. Commun. 2016, 7, 10598.CrossRefGoogle Scholar
  8. [8]
    Mou, F. Z.; Chen, C. R.; Zhong, Q.; Yin, Y. X.; Ma, H. R.; Guan, J. G. Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) janus micromotors driven by simulated body fluid and blood plasma. ACS Appl. Mater. Interfaces 2014, 6, 9897–9903.CrossRefGoogle Scholar
  9. [9]
    Solovev, A. A.; Mei, Y. F.; Ureña, E. B.; Huang, G. S.; Schmidt, O. G. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 2009, 5, 1688–1692.CrossRefGoogle Scholar
  10. [10]
    Song, M. M.; Cheng, M. J.; Ju, G. N.; Zhang, Y. J.; Shi, F. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles. Adv. Mater. 2014, 26, 7059–7063.CrossRefGoogle Scholar
  11. [11]
    Li, J. X.; Zhang, J.; Gao, W.; Huang, G. S.; Di, Z. F.; Liu, R.; Wang, J.; Mei, Y. F. Dry-released nanotubes and nanoengines by particle-assisted rolling. Adv. Mater. 2013, 25, 3715–3721.CrossRefGoogle Scholar
  12. [12]
    Mou, F. Z.; Chen, C. R.; Ma, H. R.; Yin, Y. X.; Wu, Q. Z.; Guan, J. G. Self-propelled micromotors driven by the magnesium-water reaction and their hemolytic properties. Angew. Chem., Int. Ed. 2013, 52, 7208–7212.CrossRefGoogle Scholar
  13. [13]
    Xiao, M.; Guo, X. P.; Cheng, M. J.; Ju, G. N.; Zhang, Y. J.; Shi, F. Ph-responsive on-off motion of a superhydrophobic boat: Towards the design of a minirobot. Small 2014, 10, 859–865.CrossRefGoogle Scholar
  14. [14]
    Singh, V. V.; Soto, F.; Kaufmann, K.; Wang, J. Micromotorbased energy generation. Angew. Chem., Int. Ed. 2015, 54, 6896–6899.CrossRefGoogle Scholar
  15. [15]
    Moo, J. G. S.; Presolski, S.; Pumera, M. Photochromic spatiotemporal control of bubble-propelled micromotors by a spiropyran molecular switch. ACS Nano 2016, 10, 3543–3552.CrossRefGoogle Scholar
  16. [16]
    Wang, H.; Moo, J. G. S.; Pumera, M. From nanomotors to micromotors: The influence of the size of an autonomous bubble-propelled device upon its motion. ACS Nano 2016, 10, 5014–5050.Google Scholar
  17. [17]
    Dong, B.; Zhou, T.; Zhang, H.; Li, C. Y. Directed selfassembly of nanoparticles for nanomotors. ACS Nano 2013, 7, 5192–5198.CrossRefGoogle Scholar
  18. [18]
    Liu, L. M.; Liu, M.; Su, Y. J.; Dong, Y. G.; Zhou, W.; Zhang, L. N.; Zhang, H.; Dong, B.; Chi, L. F. Tadpole-like artificial micromotor. Nanoscale 2015, 7, 2276–2280.CrossRefGoogle Scholar
  19. [19]
    Su, Y. J.; Ge, Y.; Liu, L. M.; Zhang, L. N.; Liu, M.; Sun, Y. Y.; Zhang, H.; Dong, B. Motion-based pH sensing based on the cartridge-case-like micromotor. ACS Appl. Mater. Interfaces 2016, 8, 4250–4257.CrossRefGoogle Scholar
  20. [20]
    Ibele, M.; Mallouk, T. E.; Sen, A. Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem., Int. Ed. 2009, 48, 3308–3312.CrossRefGoogle Scholar
  21. [21]
    Paxton, W. F.; Kistler, K. C.; Olmeda, C. C.; Sen, A.; St Angelo, S. K.; Cao, Y. Y.; Mallouk, T. E.; Lammert, P. E.; Crespi, V. H. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 2004, 126, 13424–13431.CrossRefGoogle Scholar
  22. [22]
    Yan, X. H.; Zhou, Q.; Yu, J. F.; Xu, T. T.; Deng, Y.; Tang, T.; Feng, Q.; Bian, L. M.; Zhang, Y.; Ferreira, A. et al. Magnetite nanostructured porous hollow helical microswimmers for targeted delivery. Adv. Funct. Mater. 2015, 25, 5333–5342.CrossRefGoogle Scholar
  23. [23]
    Xiao, M.; Xian, Y. M.; Shi, F. Precise macroscopic supramolecular assembly by combining spontaneous locomotion driven by the marangoni effect and molecular recognition. Angew. Chem., Int. Ed. 2015, 54, 8952–8956.CrossRefGoogle Scholar
  24. [24]
    Wang, B.; Liu, Y.; Zhang, Y. B.; Guo, Z. G.; Zhang, H.; Xin, J. H.; Zhang, L. Bioinspired superhydrophobic Fe3O4@polydopamine@Ag hybrid nanoparticles for liquid marble and oil spill. Adv. Mater. Interfaces 2015, 2, 1500234.CrossRefGoogle Scholar
  25. [25]
    Esteban-Fernández de Ávila, B.; Angell, C.; Soto, F.; Lopez-Ramirez, M. A.; Báez, D. F.; Xie, S. B.; Wang, J.; Chen, Y. Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano 2016, 10, 4997–5005.CrossRefGoogle Scholar
  26. [26]
    Li, T. L.; Li, J. X.; Zhang, H. T.; Chang, X. C.; Song, W. P.; Hu, Y. N.; Shao, G. B.; Sandraz, E.; Zhang, G. Y.; Li, L. Q. et al. Magnetically propelled fish-like nanoswimmers. Small 2016, 12, 6098–6105.CrossRefGoogle Scholar
  27. [27]
    Zhang, L. N.; Zhang, H.; Liu, M.; Dong, B. Reprogrammable logic gate and logic circuit based on multistimuli-responsive raspberry-like micromotors. ACS Appl. Mater. Interfaces 2016, 8, 15654–15660.CrossRefGoogle Scholar
  28. [28]
    Magdanz, V.; Medina-Sánchez, M.; Chen, Y.; Guix, M.; Schmidt, O. G. How to improve spermbot performance. Adv. Funct. Mater. 2015, 25, 2763–2770.CrossRefGoogle Scholar
  29. [29]
    Ma, X.; Hortelao, A. C.; Miguel-López, A.; Sánchez, S. Bubble-free propulsion of ultrasmall tubular nanojets powered by biocatalytic reactions. J. Am. Chem. Soc. 2016, 138, 13782–13785.CrossRefGoogle Scholar
  30. [30]
    Liu, L. M.; Dong, Y. G.; Sun, Y. Y.; Liu, M.; Su, Y. J.; Zhang, H.; Dong, B. Motion-based pH sensing using spindle-like micromotors. Nano Res. 2016, 9, 1310–1318.CrossRefGoogle Scholar
  31. [31]
    Chen, M.; Zang, J.; Xiao, D. Q.; Zhang, C.; Liu, F. Nanopumping molecules via a carbon nanotube. Nano Res. 2009, 2, 938–944.CrossRefGoogle Scholar
  32. [32]
    Qiu, H.; Shen, R.; Guo, W. L. Vibrating carbon nanotubes as water pumps. Nano Res. 2011, 4, 284–289.CrossRefGoogle Scholar
  33. [33]
    Kline, T. R.; Paxton, W. F.; Wang, Y.; Velegol, D.; Mallouk, T. E.; Sen, A. Catalytic micropumps: Microscopic convective fluid flow and pattern formation. J. Am. Chem. Soc. 2005, 127, 17150–17151.CrossRefGoogle Scholar
  34. [34]
    Farniya, A. A.; Esplandiu, M. J.; Reguera, D.; Bachtold, A. Imaging the proton concentration and mapping the spatial distribution of the electric field of catalytic micropumps. Phys. Rev. Lett. 2013, 111, 168301.CrossRefGoogle Scholar
  35. [35]
    Patra, D.; Zhang, H.; Sengupta, S.; Sen, A. Dual stimuliresponsive, rechargeable micropumps via “host–guest” interactions. ACS Nano 2013, 7, 7674–7679.CrossRefGoogle Scholar
  36. [36]
    Zhang, H.; Duan, W. T.; Lu, M. Q.; Zhao, X.; Shklyaev, S.; Liu, L.; Huang, T. J.; Sen, A. Self-powered glucose-responsive micropumps. ACS Nano 2014, 8, 8537–8542.CrossRefGoogle Scholar
  37. [37]
    Zhang, H.; Yeung, K.; Robbins, J. S.; Pavlick, R. A.; Wu, M.; Liu, R.; Sen, A.; Phillips, S. T. Self-powered microscale pumps based on analyte-initiated depolymerization reactions. Angew. Chem., Int. Ed. 2012, 51, 2400–2404.CrossRefGoogle Scholar
  38. [38]
    Yadav, V.; Zhang, H.; Pavlick, R.; Sen, A. Triggered “on/off” micropumps and colloidal photodiode. J. Am. Chem. Soc 2012, 134, 15688–15691.CrossRefGoogle Scholar
  39. [39]
    Ortiz-Rivera, I.; Shum, H.; Agrawal, A.; Sen, A.; Balazs, A. C. Convective flow reversal in self-powered enzyme micropumps. Proc. Natl. Acad. Sci. USA 2016, 113, 2585–2590.CrossRefGoogle Scholar
  40. [40]
    Wong, F.; Sen, A. Progress toward light-harvesting selfelectrophoretic motors: Highly efficient bimetallic nanomotors and micropumps in halogen media. Acs Nano 2016, 10, 7172–7179.CrossRefGoogle Scholar
  41. [41]
    Hong, Y. Y.; Diaz, M.; Córdova-Figueroa, U. M.; Sen, A. Light-driven titanium-dioxide-based reversible microfireworks and micromotor/micropump systems. Adv. Funct. Mater. 2010, 20, 1568–1576.CrossRefGoogle Scholar
  42. [42]
    Esplandiu, M. J.; Farniya, A. A.; Bachtold, A. Silicon-based chemical motors: An efficient pump for triggering and guiding fluid motion using visible light. ACS Nano 2015, 9, 11234–11240.CrossRefGoogle Scholar
  43. [43]
    Dong, B.; Gwee, L.; Salas-de la Cruz, D.; Winey, K. I.; Elabd, Y. A. Super proton conductive high-purity nafion nanofibers. Nano Lett. 2010, 10, 3785–3790.CrossRefGoogle Scholar
  44. [44]
    Dong, B.; Smith, M. E.; Wnek, G. E. Encapsulation of multiple biological compounds within a single electrospun fiber. Small 2009, 5, 1508–1512.CrossRefGoogle Scholar
  45. [45]
    Dong, Y. G.; Liu, M.; Zhang, H.; Dong, B. Reconfigurable OR and XOR logic gates based on dual responsive on-offon micromotors. Nanoscale 2016, 8, 8378–8383.CrossRefGoogle Scholar
  46. [46]
    Holz, M.; Heil, S. R.; Sacco, A. Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys. Chem. Chem. Phys. 2000, 2, 4740–4742.CrossRefGoogle Scholar
  47. [47]
    Wang, J. H.; Kennedy, J. W. Self-diffusion coefficients of sodium ion and iodide ion in aqueous sodium iodide solutions. J. Am. Chem. Soc. 1950, 72, 2080–2083.CrossRefGoogle Scholar
  48. [48]
    Determining the Volumetric Expansion Coefficient of Liquids. Physics Leaflet P2.1.2.1; LD Didactic GmbH: Hürth, Germany. https://www.ld-didactic.de/literatur/hb/e/p2/p2121_e.pdf (accessed Apr 1, 2017)Google Scholar
  49. [49]
    Rajamanickam, N.; Kumari, S.; Vendra, V. K.; Lavery, B. W.; Spurgeon, J.; Druffel, T.; Sunkara, M. K. Stable and durable CH3NH3PbI3 perovskite solar cells at ambient conditions. Nanotechnology 2016, 27, 235404.CrossRefGoogle Scholar
  50. [50]
    Wu, Y. J.; Wu, Z. G.; Lin, X. K.; He, Q.; Li, J. B. Autonomous movement of controllable assembled janus capsule motors. ACS Nano 2012, 6, 10910–10916.CrossRefGoogle Scholar
  51. [51]
    Das, S.; Shklyaev, O. E.; Altemose, A.; Shum, H.; Ortiz-Rivera, I.; Valdez, L.; Mallouk, T. E.; Balazs, A. C.; Sen, A. Harnessing catalytic pumps for directional delivery of microparticles in microchambers. Nat. Commun. 2017, 8, 14384.CrossRefGoogle Scholar
  52. [52]
    Sengupta, S.; Patra, D.; Ortiz-Rivera, I.; Agrawal, A.; Shklyaev, S.; Dey, K. K.; Córdova-Figueroa, U. C.; Mallouk, T. E.; Sen, A. Self-powered enzyme micropumps. Nat. Chem. 2014, 6, 415–422.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhouChina

Personalised recommendations