Nano Research

, Volume 11, Issue 3, pp 1687–1698 | Cite as

High-metallic-phase-concentration Mo1–xWxS2 nanosheets with expanded interlayers as efficient electrocatalysts

  • Qun He
  • Yangyang Wan
  • Hongliang Jiang
  • Chuanqiang Wu
  • Zhongti Sun
  • Shuangming ChenEmail author
  • Yu Zhou
  • Haiping Chen
  • Daobin Liu
  • Yasir A. Haleem
  • Binghui Ge
  • Xiaojun WuEmail author
  • Li SongEmail author
Research Article


In most cases, layered transition metal dichalcogenides (LTMDs), containing metallic phases, show electrochemical behavior different from their semiconductor counterparts. Typically, two-dimensional layered metallic 1T-MoS2 demonstrates better electrocatalytic performance for water splitting compared to its 2H counterpart. However, the characteristics of low metallic phase concentration and poor stability limit its applications in some cases. Herein, we demonstrate a simple and efficient bottom-up wet-chemistry strategy for the large-scale synthesis of nanoscopic ultrathin Mo1–xWxS2 nanosheets with enlarged interlayer spacing and high metallic phase concentration. Our characterizations, including X-ray absorption fine structure spectroscopy (XAFS), high-angle annular dark-fieldscanning transmission electron microscopy (HAADF-STEM), and X-ray photoelectron spectroscopy (XPS) revealed that the metallic ultrathin ternary Mo1–xWxS2 nanosheets exhibited distorted metal–metal bonds and a tunable metallic phase concentration. As a proof of concept, this optimized catalyst, with the highest metallic phase concentration (greater than 90%), achieved a low overpotential of about–155 mV at a current density of –10 mA/cm2, a small Tafel slope of 67 mV/dec, and an increased turnover frequency (TOF) of 1.3 H2 per second at an overpotential of –300 mV (vs. reversible hydrogen electrode (RHE)), highlighting the importance of the metallic phase. More importantly, this study can lead to a facile solvothermal route to prepare stable and high-metallicphase-concentration transition-metal-based two-dimensional materials for future applications.


wet-chemistry gram-scale synthesis interlayer intercalation metallic transition metal dichalcogenide electrocatalytic water splitting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the financial support of the National Basic Research Program of China (Nos. 2014CB848900 and 2016YFA0200602), the National Natural Science Foundation of China (Nos. U1532112, 11375198, 11574280, and 21573204), CUSF (No. WK2310000053) and funds from Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education). L. S. thanks the recruitment program of global experts, the CAS Hundred Talent Program. We also thank the Shanghai synchrotron Radiation Facility (14W1, SSRF), the Beijing Synchrotron Radiation Facility (1W1B and soft-X-ray endstation, BSRF), the Hefei Synchrotron Radiation Facility (MCD and Photoemission Endstations, NSRL) and USTC Center for Micro and Nanoscale Research and Fabrication.

Supplementary material

12274_2017_1786_MOESM1_ESM.pdf (3.3 mb)
High-metallic-phase-concentration Mo1−xWxS2 nanosheets with expanded interlayers as efficient electrocatalysts


  1. [1]
    Karunadasa, H. I.; Chang, C. J.; Long, J. R. A molecular molybdenum-oxo catalyst for generating hydrogen from water. Nature 2010, 464, 1329–1333.CrossRefGoogle Scholar
  2. [2]
    Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6471.CrossRefGoogle Scholar
  3. [3]
    Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.CrossRefGoogle Scholar
  4. [4]
    Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.CrossRefGoogle Scholar
  5. [5]
    Zhao, Y.; Kamiya, K.; Hashimoto, K.; Nakanishi, S. In situ CO2-emission assisted synthesis of molybdenum carbonitride nanomaterial as hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 2015, 137, 110–113.CrossRefGoogle Scholar
  6. [6]
    Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.CrossRefGoogle Scholar
  7. [7]
    Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.CrossRefGoogle Scholar
  8. [8]
    Dempsey, J. L.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 2009, 42, 1995–2004.CrossRefGoogle Scholar
  9. [9]
    Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F. B.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.CrossRefGoogle Scholar
  10. [10]
    Xing, Z. C.; Yang, X. R.; Asiri, A. M.; Sun, X. P. Threedimensional structures of MoS2@Ni core/shell nanosheets array toward synergetic electrocatalytic water splitting. ACS Appl. Mater. Interface 2016, 8, 14521–14526.CrossRefGoogle Scholar
  11. [11]
    Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900.CrossRefGoogle Scholar
  12. [12]
    Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542.CrossRefGoogle Scholar
  13. [13]
    Li, Y. H.; Liu, P. F.; Pan, L. F.; Wang, H. F.; Yang, Z. Z.; Zheng, L. R.; Hu, P.; Zhao, H. J.; Gu, L.; Yang, H. G. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat. Commun. 2015, 6, 8064.CrossRefGoogle Scholar
  14. [14]
    Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.CrossRefGoogle Scholar
  15. [15]
    Vrubel, H.; Hu, X. L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem., Int. Ed. 2012, 124, 12875–12878.CrossRefGoogle Scholar
  16. [16]
    Peng, S. J.; Li, L. L.; Han, X. P.; Sun, W. P.; Srinivasan, M.; Mhaisalkar, S. G.; Cheng, F. Y.; Yan, Q. Y.; Chen, J.; Ramakrishna, S. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 126, 12802–12807.CrossRefGoogle Scholar
  17. [17]
    Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.CrossRefGoogle Scholar
  18. [18]
    Ye, R. Q.; del Angel-Vicente, P.; Liu, Y. Y.; Arellano- Jimenez, M. J.; Peng, Z. W.; Wang, T.; Li, Y. L.; Yakobson, B. I.; Wei, S. H.; Yacaman, M. J. et al. High-performance hydrogen evolution from MoS2(1–x)Px solid solution. Adv. Mat. 2016, 28, 1427–1432.CrossRefGoogle Scholar
  19. [19]
    Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.CrossRefGoogle Scholar
  20. [20]
    Zeng, Z. Y.; Tan, C. L.; Huang, X.; Bao, S. Y.; Zhang, H. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 797–803.CrossRefGoogle Scholar
  21. [21]
    Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713–2731.CrossRefGoogle Scholar
  22. [22]
    Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. L. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2, 1262–1267.CrossRefGoogle Scholar
  23. [23]
    Voiry, D.; Yang, J.; Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28, 6197–6206.CrossRefGoogle Scholar
  24. [24]
    Yu, Y. F.; Huang, S. Y.; Li, Y. P.; Steinmann, S. N.; Yang, W. T.; Cao, L. Y. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 2014, 14, 553–558.CrossRefGoogle Scholar
  25. [25]
    Zhao, X.; Ma, X.; Sun, J.; Li, D. H.; Yang, X. R. Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution. ACS Nano 2016, 10, 2159–2166.CrossRefGoogle Scholar
  26. [26]
    Merki, D.; Hu, X. L. Recent developments of molybdeuum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888.CrossRefGoogle Scholar
  27. [27]
    He, J. N.; Liang, Y. Q.; Mao, J.; Zhang, X. M.; Yang, X. J.; Cui, Z. D.; Zhu, S. L.; Li, Z. Y.; Li, B. B. 3D tungsten-doped MoS2 nanostructure: A low-cost, facile prepared catalyst for hydrogen evolution reaction. J. Electrochem. Soc. 2016, 163, H299–H304.CrossRefGoogle Scholar
  28. [28]
    Wang, L.; Sofer, Z.; Luxa, J.; Pumere, M. MoxW1–xS2 solid solutions as 3D electrodes for hydrogen evolution reaction. Adv. Mater. Interfaces 2015, 2, 1500041.CrossRefGoogle Scholar
  29. [29]
    Zhang, X. W.; Meng, F.; Mao, S.; Ding, Q.; Shearer, M. J.; Faber, M. S.; Chen, J. H.; Hamers, R. J.; Jin, S. Amorphous MoSxCly electrocatalysts supported by vertical graphene for efficient electrochemical and photoelectrocemical hydrogen generation. Energy Environ. Sci. 2015, 8, 862–868.CrossRefGoogle Scholar
  30. [30]
    Fu, Q.; Yang, L.; Wang, W. H.; Han, A. L.; Huang, J.; Du, P. W.; Fan, Z. Y.; Zhang, J. Y.; Xiang, B. Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(1–x)Se2x with a tunable band gap. Adv. Mater. 2015, 27, 4732–4738.CrossRefGoogle Scholar
  31. [31]
    Gong, Q. F.; Cheng, L.; Liu, C. H.; Zhang, M.; Feng, Q. L.; Ye, H. L.; Zeng, M.; Xie, L. M.; Liu, Z.; Li, Y. G. Ultrathin MoS2(1–x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 2015, 5, 2213–2219.CrossRefGoogle Scholar
  32. [32]
    Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.CrossRefGoogle Scholar
  33. [33]
    Cai, Y.; Yang, X.; Liang, T.; Dai, L.; Ma, L.; Huang, G. W.; Chen, W. X.; Chen, H. Z.; Su, H. X.; Xu, M. S. Easy incorporation of single-walled carbon nanotubes into twodimensional MoS2 for high-performance hydrogen evolution. Nanotechnology 2014, 25, 465401.CrossRefGoogle Scholar
  34. [34]
    Duan, J. J.; Chen, S.; Chambers, B. A.; Andersson, G. G.; Qiao, S. Z. 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes. Adv. Mater. 2015, 27, 4234–4241.CrossRefGoogle Scholar
  35. [35]
    Wypych, F.; Solenthaler, C.; Prins, R.; Weber, Th. Electron diffraction study of intercalation compounds derived from 1T-MoS2. J. Solid State Chem. 1999, 144, 430–436.CrossRefGoogle Scholar
  36. [36]
    Lukowski, M. A.; Daniel, A. S.; English, C. R.; Meng, F.; Forticaux, A.; Hamers, R. J.; Jin, S. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 2014, 7, 2608–2613.CrossRefGoogle Scholar
  37. [37]
    Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.CrossRefGoogle Scholar
  38. [38]
    Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.CrossRefGoogle Scholar
  39. [39]
    Wypych, F.; Schöllhorn, R. 1T-MoS2, a new metallic modification of molybdenum disulfide. J. Chem. Soc. Chem. Commun. 1992, 1386–1388.Google Scholar
  40. [40]
    Liu, Q.; Li, X. L.; Xiao, Z. R.; Zhou, Y.; Chen, H. P.; Khalil, A.; Xiang, T.; Xu, J. Q.; Chu, W. S.; Wu, X. J. et al. Stable metallic 1T-WS2 nanoribbons intercalated with ammonia ions: The correlation between structure and electrical/optical properties. Adv. Mater. 2015, 27, 4837–4844.CrossRefGoogle Scholar
  41. [41]
    Liu, Q.; Li, X. L.; He, Q.; Khalil, A.; Liu, D. B.; Xiang, T.; Wu, X. J.; Song, L. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: Applications for visible-light-driven photocatalytic hydrogen evolution. Small 2015, 11, 5556–5564.CrossRefGoogle Scholar
  42. [42]
    Liu, Q.; Sun, C. Y.; He, Q.; Khalil, A.; Xiang, T.; Liu, D. B.; Zhou, Y.; Wang, J.; Song, L. Stable metallic 1T-WS2 ultrathin nanosheets as a promising agent for near-infrared photothermal ablation cancer therapy. Nano Res. 2015, 8, 3982–3991.CrossRefGoogle Scholar
  43. [43]
    Wang, F. M.; Li, J. S.; Wang, F.; Shifa, T. A.; Cheng, Z. Z.; Wang, Z. X.; Xu, K.; Zhan, X. Y.; Wang, Q. S.; Huang, Y. et al. Enhanced electrochemical H2 evolution by few-layered metallic WS2(1–x)Se2x nanoribbons. Adv. Funct. Mater. 2015, 25, 6077–6083.CrossRefGoogle Scholar
  44. [44]
    Ressler, T. WinXAS: A program for X-ray absorption spectroscopy data analysis under MS-windows. J. Synchrotron Rad. 1998, 5, 118–122.CrossRefGoogle Scholar
  45. [45]
    Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray absorption near-edge structure. Phys. Rev. B 1998, 58, 7565–7576.CrossRefGoogle Scholar
  46. [46]
    Kresse, G.; Furthmiiller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  47. [47]
    Mortensen; J. J.; Hansen, L. B.; Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 2005, 71, 035109.CrossRefGoogle Scholar
  48. [48]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  49. [49]
    Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  50. [50]
    Fan, X. L.; Wang, S. Y.; An, Y. R.; Lau, W. Catalytic activity of MS2 monolayer for electrochemical hydrogen evolution. J. Phys. Chem. C 2016, 120, 1623–1632.CrossRefGoogle Scholar
  51. [51]
    Chou, S. S.; Sai, N.; Lu, P.; Coker, E. N.; Liu, S.; Artyushkova, K.; Luk, T. S.; Kaehr, B.; Brinker, C. J. Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat. Commun. 2015, 6, 8311.CrossRefGoogle Scholar
  52. [52]
    Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.CrossRefGoogle Scholar
  53. [53]
    Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Qun He
    • 1
  • Yangyang Wan
    • 2
  • Hongliang Jiang
    • 1
  • Chuanqiang Wu
    • 1
  • Zhongti Sun
    • 2
  • Shuangming Chen
    • 1
    Email author
  • Yu Zhou
    • 1
  • Haiping Chen
    • 1
  • Daobin Liu
    • 1
  • Yasir A. Haleem
    • 1
  • Binghui Ge
    • 3
  • Xiaojun Wu
    • 2
    Email author
  • Li Song
    • 1
    Email author
  1. 1.National Synchrotron Radiation Laboratory, CAS Center for Excellence in NanoscienceUniversity of Science and Technology of ChinaHefeiChina
  2. 2.CAS Key Lab of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, Hefei National Laboratory for Physical Science at the Microscale, Synergetic Innovation of Quantum Information & Quantum TechnologyUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations