Advertisement

Nano Research

, Volume 11, Issue 3, pp 1183–1192 | Cite as

Flexible memristors as electronic synapses for neuro-inspired computation based on scotch tape-exfoliated mica substrates

  • Xiaobing YanEmail author
  • Zhenyu Zhou
  • Jianhui Zhao
  • Qi LiuEmail author
  • Hong Wang
  • Guoliang Yuan
  • Jingsheng Chen
Research Article

Abstract

Flexible memristor devices based on plastic substrates have attracted considerable attention due to their applications in wearable computers and integrated circuits. However, most plastic-substrate memristors cannot function or be grown in high-temperature environments. In this study, scotch-tape-exfoliated mica was used as the flexible memristor substrate in order to resolve these high-temperature issues. Our TiN/ZHO/IGZO memristor, which was constructed using a thin (10 μm) mica substrate, has superior flexibility and thermostability. After bending it 103 times, the device continues to exhibit exceptional electrical characteristics. It can also be implemented for transitions between high and low resistance states, even in temperatures of up to 300 °C. More importantly, the biological synaptic characteristics of paired-pulse facilitation/depression (PPF/PPD) and spike-timing-dependent plasticity (STDP) were observed through applying different pulse measurement modes. This work demonstrates that flexible memristor devices on mica substrates may potentially allow for the realization of high-temperature memristor applications for biologically-inspired computing systems.

Keywords

mica flexible memristor synapse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 61306098, 61674050 and 61422407), the Natural Science Foundation of Hebei Province (Nos. E2012201088 and E2013201176), the Science Research Program of University in Hebei Province (No. ZH2012019), Top-notch Youth Project of University in Hebei Province (No. BJ2014008), the project of enhancement comprehensive strength of the Midwest universities of Hebei University, the Outstanding Youth Project of Hebei Province (No. F2016201220), the outstanding Youth Cultivation Project of Hebei University (No. 2015JQY01), Project of science and technology activities for overseas researcher (No. CL201602), Post-graduate’s Innovation Fund Project of Hebei University (No. X201714), and Baoding Nanyang Research Institute - New Material Technology Platform (17H03).

Supplementary material

12274_2017_1781_MOESM1_ESM.pdf (1.8 mb)
Flexible memristors as electronic synapses for neuro-inspired computation based on scotch tape-exfoliated mica substrates

References

  1. [1]
    Khan, Y.; Ostfeld, A. E.; Lochner, C. M.; Pierre, A.; Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016, 28, 4373–395.CrossRefGoogle Scholar
  2. [2]
    Chen, G.; Xie, X. M.; Shen, G. Z. Flexible organic-inorganic hybrid photodetectors with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires. Nano Res. 2014, 7, 1777–1787.CrossRefGoogle Scholar
  3. [3]
    Lim, H.; Cho, W. J.; Ha, C. S.; Ando, S.; Kim, Y. K.; Park, C. H.; Lee, K. Flexible organic electroluminescent devices based on fluorine-containing colorless polyimide Substrates. Adv. Mater. 2002, 14, 1275–1279.CrossRefGoogle Scholar
  4. [4]
    Watanabe, K.; Iwaki, Y.; Uchida, Y.; Nakamura, D.; Ikeda, H.; Katayama, M.; Cho, T.; Miyake, H.; Yamazaki, S. A foldable OLED display with an in-cell touch sensor having embedded metal-mesh electrodes. J. Soc. Inform. Display 2016, 24, 12–20.CrossRefGoogle Scholar
  5. [5]
    Liang, L.; Li, K.; Xiao, C.; Fan, S. J.; Liu, J.; Zhang, W. S.; Xu, W. H.; Tong, W.; Liao, J. Y.; Zhou, Y. Y. et al. Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device. J. Am. Chem. Soc. 2015, 137, 3102–3108.CrossRefGoogle Scholar
  6. [6]
    Chou, H. H.; Nguyen, A.; Chortos, A.; To, J. W. F.; Lu, C.; Mei, J. G.; Kurosawa, T.; Bae W. G.; ToK, J. B. H.; Bao, Z. A. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 2015, 6, 8011.CrossRefGoogle Scholar
  7. [7]
    Cai, Y. M.; Tan, J.; Liu, Y. F.; Lin, M.; Huang, R. A flexible organic resistance memory device for wearable biomedical applications. Nanotechnology 2016, 27, 275206.CrossRefGoogle Scholar
  8. [8]
    Ji, Y.; Cho, B.; Song, S.; Kim, T. W.; Choe, M.; Kahng, Y. H.; Lee, T. Stable switching characteristics of organic nonvolatile memory on a bent flexible substrate. Adv. Mater. 2010, 22, 3071–3075.CrossRefGoogle Scholar
  9. [9]
    Kim, S.; Son, J. H.; Lee, S. H.; You, B. K.; Park, K. I.; Lee, H. K.; Byun, M.; Lee, K. J. Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganicbased laser lift-off. Adv. Mater. 2014, 26, 7480–7487.CrossRefGoogle Scholar
  10. [10]
    Gu, C.; Lee, J. S. Flexible hybrid organic–inorganic perovskite memory. ACS Nano 2016, 10, 5413–5418.CrossRefGoogle Scholar
  11. [11]
    Zhang, P.; Xu, B. H.; Gao, C. X.; Chen, G. L.; Gao, M. Z. Facile synthesis of Co9Se8 quantum dots as charge traps for flexible organic resistive switching memory device. ACS Appl. Mater. Interfaces 2016, 8, 30336–30343.CrossRefGoogle Scholar
  12. [12]
    Wang, Z. R.; Joshi, S.; Savel’ev, S. E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, P. J.; Li, Z. Y. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108.CrossRefGoogle Scholar
  13. [13]
    Li, Y.; Xu, L.; Zhong, Y. P.; Zhou, Y. X.; Zhong, S. J.; Hu, Y. Z.; Chua, L. O.; Miao, X. S. Associative learning with temporal contiguity in a memristive circuit for large-scale neuromorphic networks. Adv. Electron. Mater. 2015, 1, 1500125.CrossRefGoogle Scholar
  14. [14]
    Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301.CrossRefGoogle Scholar
  15. [15]
    Wang, Z. Q.; Xu, H. Y.; Li, X. H.; Yu, H.; Liu, Y. C.; Zhu, X. J. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 2012, 22, 2759–2765.CrossRefGoogle Scholar
  16. [16]
    Yan, X. B.; Zhou, Z. Y.; Ding, B. F.; Zhao, J. H.; Zhang, Y. Y. Superior resistive switching memory and biological synapse properties based on a simple TiN/SiO2/p-Si tunneling junction structure. J. Mater. Chem. C. 2017, 5, 2259–2267.CrossRefGoogle Scholar
  17. [17]
    Jiang, J.; Guo, J. J.; Wan, X.; Yang, Y.; Xie, H. P.; Niu, D. M.; Yang, J. L.; He, J.; Gao, Y. L.; Wan, Q. 2D MoS2 neuromorphic devices for brain-like computational systems. Small 2017, 13, 1700933.CrossRefGoogle Scholar
  18. [18]
    Kim, S.; Jeong, H. Y.; Kim, S. K.; Choi, S. Y.; Lee, K. J. Flexible memristive memory array on plastic substrates. Nano Lett. 2011, 11, 5438–5442.CrossRefGoogle Scholar
  19. [19]
    Wu, W. F.; Chiou, B. S. Deposition of indium tin oxide films on polycarbonate substrates by radio-frequency magnetron sputtering. Thin Solid Films 1997, 298, 221–227.CrossRefGoogle Scholar
  20. [20]
    Yang, Z. W.; Han, S. H.; Yang, T. L.; Ye, L. N.; Ma, H. L.; Cheng, C. F. ITO films deposited on water-cooled flexible substrate by bias RF magnetron sputtering. Appl. Surf. Sci. 2000, 161, 279–285.CrossRefGoogle Scholar
  21. [21]
    Werner, M. R.; Fahrner, W. R. Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications. IEEE Trans. Ind. Electron. 2011, 48, 249–257.CrossRefGoogle Scholar
  22. [22]
    Cheng, L.; Fenter, P.; Nagy, K. L.; Schlegel, M. L.; Sturchio, N. C. Molecular-scale density oscillations in water adjacent to a mica surface. Phys. Rev. Lett. 2001, 87, 156103.CrossRefGoogle Scholar
  23. [23]
    Schlegel, M. L.; Nagy, K. L.; Fenter, P.; Cheng, L.; Sturchio, N. C.; Jacobsen, S. D. Cation sorption on the muscovite (001) surface in chloride solutions using high-resolution X-ray reflectivity. Geochim. Cosmochim. Acta 2006, 70, 3549–3565.CrossRefGoogle Scholar
  24. [24]
    Scales, P. J.; Grieser, F.; Healy, T. W. Electrokinetics of the muscovite mica-aqueous solution interface. Langmuir 1990, 6, 582–589.CrossRefGoogle Scholar
  25. [25]
    Israelachvili, J. N.; Pashley, R. M. Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 1983, 306, 249–250.CrossRefGoogle Scholar
  26. [26]
    Kuwahara, Y. Comparison of the surface structure of the tetrahedral sheets of muscovite and phlogopite by AFM. Phys. Chem. Miner. 2001, 28, 1–8.CrossRefGoogle Scholar
  27. [27]
    Hu, J.; Xiao, X. D.; Ogletree, D. F.; Salmeron, M. The structure of molecularly thin films of water on mica in humid environments. Surf. Sci. 1995, 344, 221–236.CrossRefGoogle Scholar
  28. [28]
    Xu, L.; Lio, A.; Hu, J.; Ogletree, D. F.; Salmeron, M. Wetting and capillary phenomena of water on mica. J. Phys. Chem. B 1998,102, 540–548.CrossRefGoogle Scholar
  29. [29]
    Miranda, P. B.; Xu, L.; Shen, Y. R.; Salmeron, M. Icelike water monolayer adsorbed on mica at room temperature. Phys. Rev. Lett. 1998, 81, 5876–5879.CrossRefGoogle Scholar
  30. [30]
    Antognozzi, M.; Humphris, A. D. L.; Miles, M. J. Observation of molecular layering in a confined water film and study of the layers viscoelastic properties. Appl. Phys. Lett. 2001, 78, 300–302.CrossRefGoogle Scholar
  31. [31]
    Obreimoff, J. W. The splitting strength of mica. Proc. Roy. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 1930, 127, 290–297.CrossRefGoogle Scholar
  32. [32]
    Wang, Y. F.; Lin, Y. C.; Wang, I. T.; Lin, T. P.; Hou, T. H. Characterization and modeling of nonfilamentary Ta/TaOx/ TiO2/Ti analog synaptic device. Sci. Rep. 2015, 5, 10150.CrossRefGoogle Scholar
  33. [33]
    Campbell, P. A.; Sinnamon, L. J.; Thompson, C. E.; Walmsley, D. G. Atomic force microscopy evidence for K+ domains on freshly cleaved mica. Surf. Sci. 1998, 410, L768–L772.CrossRefGoogle Scholar
  34. [34]
    Kim, Y. S.; Maeda, N.; Kitada, H.; Fujimoto, K.; Kodama, S.; Kawai, A.; Arai, K.; Suzuki, K.; Nakamura, T.; Ohba, T. Advanced wafer thinning technology and feasibility test for 3D integration. Microelectron. Eng. 2013, 107, 65–71.CrossRefGoogle Scholar
  35. [35]
    Poppa, H.; Elliot, A. G. The surface composition of mica substrates. Surf. Sci. 1971, 24, 149–163.CrossRefGoogle Scholar
  36. [36]
    Lee, C.; Park, A.; Cho, Y.; Park, M.; Lee, W. I.; Kim, H. W. Influence of ZnO buffer layer thickness on the electrical and optical properties of indium zinc oxide thin films deposited on PET substrates. Ceram. Int. 2008, 34, 1093–1096.CrossRefGoogle Scholar
  37. [37]
    Baek, Y. J.; Hu, Q. L.; Yoo, J. W.; Choi, Y. J.; Kang, C. J.; Lee, H. H.; Min, S. H.; Kim, H. M.; Kim, K. B.; Yoon, T. S. Tunable threshold resistive switching characteristics of Pt–Fe2O3 core–shell nanoparticle assembly by space charge effect. Nanoscale 2013, 5, 772–779.CrossRefGoogle Scholar
  38. [38]
    Du, C.; Ma, W.; Chang, T.; Sheridan, P.; Lu, W. D. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv. Funct. Mater. 2015, 25, 4290–4299.CrossRefGoogle Scholar
  39. [39]
    Li, Y.; Zhong, Y. P.; Zhang, J. J.; Xu, L.; Wang, Q.; Sun, H. J.; Tong, H.; Cheng, X.; M. Miao, X. S. Activitydependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Sci. Rep. 2014, 4, 4906.CrossRefGoogle Scholar
  40. [40]
    Li, Y.; Zhong, Y. P.; Xu, L.; Zhang, J. J.; Xu, X. H.; Sun, H. J.; Miao, X. S. Ultrafast synaptic events in a chalcogenide memristor. Sci. Rep. 2013, 3, 1619.CrossRefGoogle Scholar
  41. [41]
    Yang, Y. C.; Lee, J. H.; Lee, S.; Liu, C. H.; Zhong, Z. H.; Lu, W. Oxide resistive memory with functionalized graphene as built-in selector element. Adv. Mater. 2014, 26, 3693–3699.CrossRefGoogle Scholar
  42. [42]
    Chang, S. H.; Lee, J. S.; Chae, S. C.; Lee, S. B.; Liu, C.; Kahng, B.; Kim, D. W.; Noh, T. W. Occurrence of both unipolar memory and threshold resistance switching in a NiO film. Phys. Rev. Lett. 2009, 102, 026801.CrossRefGoogle Scholar
  43. [43]
    Lee, M. J.; Kim, S. I.; Lee, C. B.; Yin, H. X.; Ahn, S. E.; Kang, B. S.; Kim, K. H.; Park, J. C.; Kim, C. J.; Song. I.; et al. Low-temperature-grown transition metal oxide based storage materials and oxide transistors for high-density nonvolatile memory. Adv. Funct. Mater. 2009, 19, 1587–1593.CrossRefGoogle Scholar
  44. [44]
    Lee, M. J.; Han, S.; Jeon, S. H.; Park, B. H.; Kang, B. S.; Ahn, S. E.; Kim, K. H.; Lee, C. B.; Kim C. J.; Yoo, I. K. et al. Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett. 2009, 9, 1476–1481.CrossRefGoogle Scholar
  45. [45]
    Tseng, H. C.; Chang, T. C.; Huang, J. J.; Yang, P. C.; Chen, Y. T.; Jian, F. Y.; Sze, S. M.; Tsai, M. J. Investigating the improvement of resistive switching trends after post-forming negative bias stress treatment. Appl. Phys. Lett. 2011, 99, 132104.CrossRefGoogle Scholar
  46. [46]
    Zhang, H. J.; Zhang, X. P.; Shi, J. P.; Tian, H. F.; Zhao, Y. G. Effect of oxygen content and superconductivity on the nonvolatile resistive switching in YBa2Cu3O6+x/Nb-doped SrTiO3 heterojunctions. Appl. Phys. Lett. 2009, 94, 092111.CrossRefGoogle Scholar
  47. [47]
    Mott, N. F.; Davis, E. A. Electronic Processes in Non-Crystalline Materials; Oxford University Press: Oxford, 1979.Google Scholar
  48. [48]
    Pollak, M. A percolation treatment of dc hopping conduction. J. Non-Cryst. Solids 1972, 11, 1–24.CrossRefGoogle Scholar
  49. [49]
    Yang, Y. C.; Sheridan, P.; Lu, W. Complementary resistive switching in tantalum oxide-based resistive memory devices. Appl. Phys. Lett. 2012, 100, 203112.CrossRefGoogle Scholar
  50. [50]
    Mott, N. F. Conduction in non-crystalline materials: III. Localized states in a pseudogap and near extremities of conduction and valence bands. Philos. Mag. 1969, 19, 835–852.Google Scholar
  51. [51]
    Zhu, X. J.; Du, C.; Jeong, Y.; Lu, W. D. Emulation of synaptic metaplasticity in memristors. Nanoscale 2017, 9, 45–51.CrossRefGoogle Scholar
  52. [52]
    Chang, T.; Jo, S. H.; Kim, K. H.; Sheridan, P.; Gaba, S.; Lu, W. Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 2011, 102, 857–863.CrossRefGoogle Scholar
  53. [53]
    Yang, R.; Terabe, K.; Liu, G. Q.; Tsuruoka, T.; Hasegawa, T.; Gimzewski, J. K.; Aono, M. On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration. ACS Nano 2012, 6, 9515–9521.CrossRefGoogle Scholar
  54. [54]
    Yan, X. B.; Hao, H.; Chen, Y. F.; Li, Y. C.; Banerjee, W. Highly transparent bipolar resistive switching memory with In-Ga-Zn-O semiconducting electrode in In-Ga-Zn-O/ Ga2O3/In-Ga-Zn-O structure. Appl. Phys. Lett. 2014, 105, 093502.CrossRefGoogle Scholar
  55. [55]
    Nian, Y. B.; Strozier, J.; Wu, N. J.; Chen, X.; Ignatiev, A. Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 2007, 98, 146403.CrossRefGoogle Scholar
  56. [56]
    Ren, S. X.; Zhang, L. Y.; Dong, J. Y.; Huang, Y. F.; Guo, J. J.; Zhang, L.; Zhao, J.; Zhao X.; Chen, W. Electric field control of magnetism in Ti/ZnO/Pt and Ti/ZnO/SRO devices. J. Mater. Chem. C 2015, 3, 4077–4080.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.College of Electron and Information Engineering, Key Laboratory of Digital Medical Engineering of Hebei Province, Key Laboratory of Optoelectronic Information Materials of Hebei ProvinceHebei UniversityBaodingChina
  2. 2.Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of MicroelectronicsChinese Academy of SciencesBeijingChina
  3. 3.School of Materials Science and EngineeringNanjing University of Science and TechnologyNanjingChina
  4. 4.Department of Materials Science and EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations