Advertisement

Nano Research

, Volume 11, Issue 3, pp 1642–1650 | Cite as

A novel method for preparing and characterizing graphene nanoplatelets/aluminum nanocomposites

  • Duosheng LiEmail author
  • Yin Ye
  • Xiaojun Liao
  • Qing H. Qin
Research Article

Abstract

Graphene nanoplatelets/aluminum (GNPs/Al) nanocomposites were fabricated using a novel two-step method. High resolution transmission electron microscope (HRTEM), Raman, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), EDS mapping, and mechanical testing system (MTS) were applied to characterize the microstructure and mechanical properties of the GNPs/Al nanocomposites. The GNPs were homogeneously dispersed in GNPs/Al nanocomposites, and presented a fine interface behavior and microstructure characteristics. A harmful phase, aluminum carbide (Al4C3), was not observed in significant quantities in the nanocomposite. Compared with pure aluminum, the mechanical properties of the GNPs/Al nanocomposites containing a low volume fraction of GNPs were sharply improved. When 0.5 vol.%, 1.0 vol.%, and 2.0 vol.% GNPs were added to the aluminum matrix, the average compressive strength of GNPs/Al nanocomposites was 297, 345, and 527 MPa, respectively, which remarkably increased the strength over the original aluminum by 330% to 586%.

Keywords

graphene nanoplatelets nanocomposites mechanical properties two-step method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This project was supported by the National Natural Science Foundation of China (NSFC) (Nos. 51562027 and 11372100), and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology.

References

  1. [1]
    Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.CrossRefGoogle Scholar
  2. [2]
    Jiang W. G.; Zeng Y. H.; Qin Q. H.; Luo Q. H. A novel oscillator based on heterogeneous carbon@MoS2 nanotubes. Nano Res. 2016, 9, 1775–1784.CrossRefGoogle Scholar
  3. [3]
    Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area singleand bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.CrossRefGoogle Scholar
  4. [4]
    Hao, Y. F.; Bharathi, M. S.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 2013, 342, 720–723.CrossRefGoogle Scholar
  5. [5]
    Lee, C. G.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.CrossRefGoogle Scholar
  6. [6]
    Weitz, R. T.; Yacoby, A. Nanomaterials: Graphene rests easy. Nat. Nanotechnol. 2010, 5, 699–700.CrossRefGoogle Scholar
  7. [7]
    Sun, Z. Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. Growth of graphene from solid carbon sources. Nature 2010, 468, 549–552.CrossRefGoogle Scholar
  8. [8]
    Istrate, O. M.; Paton, K. R.; Khan, U.; O’Neill, A.; Bell, A. P.; Coleman, J. N. Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon 2014, 78, 243–249.CrossRefGoogle Scholar
  9. [9]
    Hu, K. S.; Kulkarni, D. D.; Choi, I.; Tsukruk, V. V. Graphenepolymer nanocomposites for structural and functional applications. Prog. Poly. Sci. 2014, 39, 1934–1972.CrossRefGoogle Scholar
  10. [10]
    Österholm, A.; Lindfors, T.; Kauppila, J.; Damlin, P.; Kvarnström C. Electrochemical incorporation of graphene oxide into conducting polymer films. Electrochim. Acta 2012, 83, 463–470.CrossRefGoogle Scholar
  11. [11]
    Wang, J. Y.; Li, Z. Q.; Fan, G. L.; Pan, H. H.; Chen, Z. X.; Zhang, D. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater. 2016, 66, 594–597CrossRefGoogle Scholar
  12. [12]
    Shin, S. E.; Choi, H. J.; Shin, J. H.; Bae, D. H. Strengthening behavior of few-layered graphene/aluminum composites. Carbon 2015, 82, 143–151.CrossRefGoogle Scholar
  13. [13]
    Fattahi, M.; Gholami, A. R.; Eynalvandpour, A.; Ahmadi, E.; Fattahi, Y.; Akhavan, S. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires. Micron 2014, 64, 20–27.CrossRefGoogle Scholar
  14. [14]
    Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.CrossRefGoogle Scholar
  15. [15]
    Nieto, A.; Lahiri, D.; Agarwal, A. Nanodynamic mechanical behavior of graphene nanoplatelet-reinforced tantalum carbide. Scripta Mater. 2013, 69, 678–681.CrossRefGoogle Scholar
  16. [16]
    Li, D. S.; Wu, W. Z.; Qin, Q. H.; Zhou, X. L.; Zuo, D. Y.; Lu, S. Q; Gao, Y. B. Microstructure and mechanical properties of graphene/Al composites. Chin. J. Nonferr. Metal. 2015, 25, 1498–1504.Google Scholar
  17. [17]
    Shin, S. E.; Bae, D. H. Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene. Compos. Part A: Appl. Sci. Manuf. 2015, 78, 42–47.CrossRefGoogle Scholar
  18. [18]
    Bastwros, M.; Kim, G. Y.; Zhu, C.; Zhang, K.; Wang, S. R; Tang, X. D.; Wang, X. W. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos. Part B: Eng. 2014, 60, 111–118.CrossRefGoogle Scholar
  19. [19]
    Rashad, M.; Pan, F. S.; Tang, A. T.; Asif, M. Effect of Graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci: Mater. Int. 2014, 2, 101–108.CrossRefGoogle Scholar
  20. [20]
    Li, J. L.; Xiong, Y. C.; Wang, X. D.; Yan, S. J.; Yang, C.; He, W. W.; Chen, J. Z.; Wang, S. Q.; Zhang, X. Y.; Dai, S. L. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater. Sci. Eng. A 2015, 626, 400–405.CrossRefGoogle Scholar
  21. [21]
    Pérez-Bustamante, R.; Bolaños-Morales, D.; Bonilla-Martínez, J.; Estrada-Guela, I.; Martínez-Sánchez, R. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloys Compd. 2014, 615, S578–S582.CrossRefGoogle Scholar
  22. [22]
    Deng, C. F.; Wang, D. Z.; Zhang, X. X.; Li, A. B. Processing and properties of carbon nanotubes reinforced aluminum composites. Mater. Sci. Eng. A 2007, 444, 138–145.CrossRefGoogle Scholar
  23. [23]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  24. [24]
    Tuinstra, F.; Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 2014, 53, 1126–1130.CrossRefGoogle Scholar
  25. [25]
    Jeon, C. H.; Jeong, Y. H.; Seo, J. J.; Tien, H. N.; Hong, S. T.; Yum, Y. J.; Hur, S. H., Lee, K. J. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. Int. J. Precis. Eng. Manuf. 2014, 15, 1235–1239.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Duosheng Li
    • 1
    Email author
  • Yin Ye
    • 1
  • Xiaojun Liao
    • 1
  • Qing H. Qin
    • 2
  1. 1.School of Materials Science and EngineeringNanchang Hangkong UniversityNanchangChina
  2. 2.Research School of EngineeringAustralian National UniversityActonAustralia

Personalised recommendations