Advertisement

Nano Research

, Volume 11, Issue 3, pp 1625–1641 | Cite as

Cell-assembled (Gd-DOTA)i-triphenylphosphonium (TPP) nanoclusters as a T2 contrast agent reveal in vivo fates of stem cell transplants

  • Yanhui Zhang
  • Hongyan Zhang
  • Binbin Li
  • Hailu Zhang
  • Bo TanEmail author
  • Zongwu DengEmail author
Research Article

Abstract

A simple and straightforward strategy for magnetic resonance imaging (MRI) of stem cell transplants in terms of their viability, migration and homing, and differentiation has been pursued over the years. Herein we couple Gd-DOTA with triphenylphosphonium (TPP) to yield small molecule (Gd-DOTA)i-TPP (i = 1,4) agents and show that labeling cells with (Gd-DOTA)i-TPP via electroporation (EP) results in two distinct cellular distributions of (Gd-DOTA)i-TPP: freely and evenly distributed in the cytosol or cell-assembled nanoclusters in the cytoplasm. The two distinct cellular distributions contribute in different ways to MRI signals in vitro and in vivo. Importantly, we present a detailed interpretation of MRI results based on the signal intensity equation and cellular longitudinal (T1-) and transverse (T2-) relaxation rates of water protons. We demonstrate that cell-assembled (Gd-DOTA)i-TPP nanoclusters not only promote its intracellular retention time but also induce significant MRI signal reduction, which act as an excellent T2 contrast agent and allows for unambiguous reporting of in vivo viability and migration of cell transplants under T2-weighted MRI over a long period. Notably, (Gd-DOTA)i-TPP agents released as a result of exocytosis or cell death induce signal enhancement in the surrounding tissue such that the labeled cells can be unambiguously discriminated from its host tissue. The labeling and imaging strategy provides abundant information on the in vivo fates of stem cell transplants. The strategy features a single contrast, single imaging mode with dual signal output.

Keywords

magnetic resonance imaging (MRI) GDL contrast agent cell transplantation stem cells cell viability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was funded by general projects from the National Natural Science Foundation of China (Nos. 21673281, 31371010), a Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA01030203), and a Basic Research Project from the Ministry of Science and Technology of China (No. 2011CB965004). The authors also acknowledge Karebay Biochem Inc. for assistance with synthesis of DOTAi-TPP.

Supplementary material

12274_2017_1778_MOESM1_ESM.pdf (1.2 mb)
Cell-assembled (Gd-DOTA)i-triphenylphosphonium (TPP) nanoclusters as a T2 contrast agent reveal in vivo fates of stem cell transplants

References

  1. [1]
    Weightman, A. P.; Jenkins, S. I.; Chari, D. M. Using a 3-D multicellular simulation of spinal cord injury with live cell imaging to study the neural immune barrier to nanoparticle uptake. Nano Res. 2016, 9, 2384–2397.CrossRefGoogle Scholar
  2. [2]
    Yu, M.; Lei, B.; Gao, C. B.; Yan, J.; Ma, P. X. Optimizing surface-engineered ultra-small gold nanoparticles for highly efficient miRNA delivery to enhance osteogenic differentiation of bone mesenchymal stromal cells. Nano Res. 2017, 10, 49–63.CrossRefGoogle Scholar
  3. [3]
    Deng, J.; Zheng, H. H.; Zheng, X. W.; Yao, M. Y.; Li, Z.; Gao, C. Y. Gold nanoparticles with surface-anchored chiral poly(acryloyl-L(D)-valine) induce differential response on mesenchymal stem cell osteogenesis. Nano Res. 2016, 9, 3683–3694.CrossRefGoogle Scholar
  4. [4]
    Gera, A.; Steinberg, G. K.; Guzman, R. In vivo neural stem cell imaging: current modalities and future directions. Regen. Med. 2010, 5, 73–86.CrossRefGoogle Scholar
  5. [5]
    Bulte, J. W. M. In vivo MRI cell tracking: Clinical studies. Am. J. Roentgenol. 2009, 193, 314–325.CrossRefGoogle Scholar
  6. [6]
    Kraitchman, D. L.; Bulte, J. W. M. Imaging of stem cells using MRI. Basic Res. Cardiol. 2008, 103, 105–113.Google Scholar
  7. [7]
    Politi, L. S. MR-based imaging of neural stem cells. Neuroradiology 2007, 49, 523–534.CrossRefGoogle Scholar
  8. [8]
    Rogers, W. J.; Meyer, C. H.; Kramer, C. M. Technology insight: in vivo cell tracking by use of MRI. Nat. Clin. Prac. Cardiov. Med. 2006, 3, 554–562.CrossRefGoogle Scholar
  9. [9]
    Mahmoudi, M.; Hosseinkhani, H.; Hosseinkhani, M.; Boutry, S.; Simchi, A.; Shane Journeay, W.; Subramani, K.; Laurent, S. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem. Rev. 2011, 111, 253–280.CrossRefGoogle Scholar
  10. [10]
    Bulte, J. W. M.; Zhang, S. C.; van Gelderen, P.; Herynek, V.; Jordan, E. K.; Duncan, I. D.; Frank, J. A. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc. Natl. Acad. Sci. USA 1999, 96, 15256–15261.CrossRefGoogle Scholar
  11. [11]
    Hoehn, M.; Kü stermann, E.; Blunk, J.; Wiedermann, D.; Trapp, T.; Wecker, S.; Fö cking, M.; Arnold, H.; Hescheler, J.; Fleischmann, B. K. et al. Monitoring of implanted stem cell migration in vivo: A highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc. Natl. Acad. Sci. USA 2002, 99, 16267–16272.CrossRefGoogle Scholar
  12. [12]
    Guzman, R.; Bliss, T.; De Los Angeles, A.; Moseley, M.; Palmer, T.; Steinberg, G. Neural progenitor cells transplanted into the uninjured brain undergo targeted migration after stroke onset. J. Neurosci. Res. 2008, 86, 873–882.CrossRefGoogle Scholar
  13. [13]
    Hinds, K. A.; Hill, J. M.; Shapiro, E. M.; Laukkanen, M. O.; Silva, A. C.; Combs, C. A.; Varney, T. R.; Balaban, R. S.; Koretsky, A. P.; Dunbar, C. E. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 2003, 102, 867–872.CrossRefGoogle Scholar
  14. [14]
    Shapiro, E. M.; Skrtic, S.; Sharer, K.; Hill, J. M.; Dunbar, C. E.; Koretsky, A. P. MRI detection of single particles for cellular imaging. Proc. Natl. Acad. Sci. USA 2004, 101, 10901–10906.CrossRefGoogle Scholar
  15. [15]
    Yi, P. W.; Chen, G. C.; Zhang, H. L.; Tian, F.; Tan, B.; Dai, J. W.; Wang, Q. B.; Deng, Z. W. Magnetic resonance imaging of Fe3O4@SiO2-labeled human mesenchymal stem cells in mice at 11.7 T. Biomaterials 2013, 34, 3010–3019.CrossRefGoogle Scholar
  16. [16]
    Terrovitis, J.; Stuber, M.; Youssef, A.; Preece, S.; Leppo, M.; Kizana, E.; Schä r, M.; Gerstenblith, G.; Weiss, R. G.; Marbá n, E. et al. Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation 2008, 117, 1555–1562.CrossRefGoogle Scholar
  17. [17]
    Wang, Y. X. J.; Wang, H. H.; Au, D. W. T.; Zou, B. S.; Teng, L. S. Pitfalls in employing superparamagnetic iron oxide particles for stem cell labeling and in vivo MRI tracking. Brit. J. Radiol. 2008, 81, 987–988.CrossRefGoogle Scholar
  18. [18]
    Khurana, A.; Nejadnik, H.; Gawande, R.; Lin, G. T.; Lee, S. M.; Messing, S.; Castaneda, R.; Derugin, N.; Pisani, L.; Lue, T. F. et al. Intravenous ferumoxytol allows noninvasive MRimaging monitoring of macrophage migration into stem cell transplants. Radiology 2012, 264, 803–811.CrossRefGoogle Scholar
  19. [19]
    Wang, Q. W.; Chen, B.; Ma, F.; Lin S. K.; Cao M.; Li Y.; Gu, N. Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2. Nano Res. 2017, 10, 626–642.CrossRefGoogle Scholar
  20. [20]
    Guenoun, J.; Ruggiero, A.; Doeswijk, G.; Janssens, R. C.; Koning, G. A.; Kotek, G.; Krestin, G. P.; Bernsen, M. R. In vivo quantitative assessement of cell viability of gadolinium or iron-labeled cells using MRI and bioluminescence imaging. Contrast Media Mol. Imaging 2013, 8, 165–174.CrossRefGoogle Scholar
  21. [21]
    Nejadnik, H.; Ye, D. J.; Lenkov, O. D.; Doing, J. S.; Martin, J. E; Castillo, R.; Derugin, N.; Sennino, B.; Rao, J. H.; Daldrup-Link, H. E. Magnetic resonance imaging of stem cell apoptosis in arthritic joints with a caspase activatable contrast agent. ACS Nano 2015, 9, 1150–1160.CrossRefGoogle Scholar
  22. [22]
    Villaraza, A. J. L.; Bumb, A.; Brechbiel, M. W. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: The interplay between size, function, and pharmacokinetics. Chem. Rev. 2010, 110, 2921–2959.CrossRefGoogle Scholar
  23. [23]
    Tachibana, Y.; Enmi J. I.; Agudelo, C. A.; Iida, H.; Yamaoka, T. Long-term/bioinert labeling of rat mesenchymal stem cells with PVA-Gd conjugates and MRI monitoring of the labeled cell survival after intramuscular transplantation. Bioconjugate Chem. 2014, 25, 1243–1251.CrossRefGoogle Scholar
  24. [24]
    Agudelo, C. A.; Tachibana, Y.; Hurtado, A. F.; Ose, T.; Iida, H.; Yamaoka, T. The use of magnetic resonance cell tracking to monitor endothelial progenitor cells in a rat hindlimb ischemic model. Biomaterials 2012, 33, 2439–2448.CrossRefGoogle Scholar
  25. [25]
    Ngen, E. J.; Wang, L.; Kato, Y.; Krishnamachary, B.; Zhu, W. L.; Gandhi, N.; Smith, B.; Armour, M.; Wong, J.; Gabrielson, K. et al. Imaging transplanted stem cells in real time using an MRI dual-contrast method. Sci. Rep. 2015, 5, 13628.CrossRefGoogle Scholar
  26. [26]
    Endres, P. J.; MacRenaris, K. W.; Vogt, S.; Meade, T. J. Cellpermeable MRcontrast agents with increased intracellular retention. Bioconjugate Chem. 2008, 19, 2049–2059.CrossRefGoogle Scholar
  27. [27]
    Cohen, B.; Ziv, K.; Plaks, V.; Israely, T.; Kalchenko, V.; Harmelin, A.; Benjamin, L. E.; Neeman, M. MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat. Med. 2007, 13, 498–503.CrossRefGoogle Scholar
  28. [28]
    Genove, G.; DeMarco, U.; Xu, H. Y.; Goins, W. F.; Ahrens, E. T. A new transgene reporter for in vivo magnetic resonance imaging. Nat. Med. 2005, 11, 450–454.CrossRefGoogle Scholar
  29. [29]
    Choi, J. S.; Lee, J. H.; Shin, T. H.; Song, H. T.; Kim, E. Y.; Cheon, J. Self-confirming “and” logic nanoparticles for fault-free MRI. J. Am. Chem. Soc. 2010, 132, 11015–11017.CrossRefGoogle Scholar
  30. [30]
    Zhou, Z. J.; Huang, D. T.; Bao, J. F.; Chen, Q. L.; Liu, G.; Chen, Z.; Chen, X. Y.; Gao, J. H. A synergistically enhanced T 1-T 2 dual-modal contrast agent. Adv. Mater. 2012, 24, 6223–6228.CrossRefGoogle Scholar
  31. [31]
    Ni, K. Y.; Zhao, Z. H.; Zhang, Z. J.; Zhou, Z. J.; Yang, L.; Wang, L. R.; Ai, H.; Gao, J. H. Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T 1 contrast ability. Nanoscale 2016, 8, 3768–3774.CrossRefGoogle Scholar
  32. [32]
    Murphy, M. P.; R. Smith, R. A. J. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 629–656.CrossRefGoogle Scholar
  33. [33]
    Murphy M. P.; Smith, R. A. J. Drug delivery to mitochondria: The key to mitochondrial medicine. Adv. Drug Del. Rev. 2000, 41, 235–250.CrossRefGoogle Scholar
  34. [34]
    Morrison, D. E.; Aitken, J. B.; de Jonge, M. D.; Issa, F.; Harris, H. H.; Rendina, L. M. Synthesis and biological evaluation of a class of mitochondrially-targeted Gadolinium(III) agents. Chem. Eur. J. 2014, 20, 16602–16612.CrossRefGoogle Scholar
  35. [35]
    DiGregorio, E.; Ferrauto, G; Gianolio, E.; Aime, S. Gd loading by hypotonic swelling: an efficient and safe route for cellular labeling. Contrast Media Mol. Imaging 2013, 8, 475–486.CrossRefGoogle Scholar
  36. [36]
    Li, C.; Winnard, P. Jr.; Bhujwalla, Z. M. Facile synthesis of 1-(acetic acid)-4,7,10-tris(tert-butoxycarbonylmethyl)-1,4,7,10- tetraazacyclododecane: a reactive precursor chelating agent. Tetrahedron Lett. 2009, 50, 2929–2931.CrossRefGoogle Scholar
  37. [37]
    Zhang, Q. Q.; Cao, R.; Fei, H.; Zhou, M. Mitochondriatargeting phosphorescent iridium(III) complexes for living cell imaging. Dalton Trans. 2014, 43, 16872–16879.CrossRefGoogle Scholar
  38. [38]
    McRobbie, D. W; Moore, E. A.; Graves, M. J.; Prince, M. R. MRI from Picture to Proton; 2nd ed. Cambridge University Press: New York, 2007.Google Scholar
  39. [39]
    Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Gadolinium(III) chelates as MRI contrast agents: Structures, dynamics, and applications. Chem. Rev. 1999, 99, 2293–2352.CrossRefGoogle Scholar
  40. [40]
    Barthel. A. K.; Dass, M.; Dröge, M.; Cramer, J. M.; Baumann, D; Urban, M.; Landfester, K.; Mailänder, V.; Liberwirth, I. Imaging the intracellular degradation of biodegradable polymer nanoparticles. Beilstein J. Nanotechnol. 2014, 5, 1905–1917.CrossRefGoogle Scholar
  41. [41]
    Terreno, E.; Crich, S. G.; Belfiore, S.; Biancone, L.; Cabella, C.; Esposito, G; Manazza, A. D; Aime, S. Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons. Magn. Reson. Med. 2006, 55, 491–497.CrossRefGoogle Scholar
  42. [42]
    Gianolio, E.; Arena, F; Strijkers, G. J.; Nicolay, K.; Hö gset, A.; Aime, S. Photochemical activation of endosomal escape of MRI-Gd-agents in tumor cells. Mag. Reson. Med. 2011, 65, 212–219.CrossRefGoogle Scholar
  43. [43]
    Digilio. G.; Catanzaro, V.; Fedeli, F.; Gianolio, E.; Menchise, V.; Napolitano, R.; Gringeri, C.; Aime, S. Targeting exofacial protein thiols with GdIII complexes. An efficient procedure for MRI cell labelling. Chem. Comm. 2009, 893–895.Google Scholar
  44. [44]
    Digilio, G.; Menchise, V.; Gianolio, E.; Catanzaro, V.; Carrera, C.; Napolitano, R.; Fedeli, F.; Aime, S. Exofacial protein thiols as a route for the internalization of Gd(III)-based complexes for magnetic resonance imaging cell labeling. J. Med. Chem. 2010, 53, 4877–4890.CrossRefGoogle Scholar
  45. [45]
    Cao, L. M,; Li, B. B.; Yi, P. W.; Zhang, H. L.; Dai, J. W.; Tan, B.; Deng, Z. W. The interplay of T 1- and T 2-relaxiation on T1-weighted MRI of hMSCs induced by Gd-DOTApeptides. Biomaterials 2014, 35, 4168–4174.CrossRefGoogle Scholar
  46. [46]
    Chen, H. W.; Yeh, J. L.; Wang, L. Y.; Khurshid, H.; Peng, N.; Wang, A. Y.; Mao, H. Preparation and control of the formation of single core and clustered nanoparticles for biomedical applications using a versatile amphiphilic diblock copolymer. Nano Res. 2010, 3, 852–862.CrossRefGoogle Scholar
  47. [47]
    Chen, H. W.; Zou, P.; Connam, J.; Paholak, H.; Sun, D. X. Intracellular dissociation of a polymer coating from nanoparticles. Nano Res. 2012, 5, 815–825.CrossRefGoogle Scholar
  48. [48]
    Yang, Z. Z.; Ding, X. G.; Jiang, J. Facile synthesis of magnetic-plasmonicnanocomposites as T 1 MRI contrast enhancing and photothermal therapeutic agents. Nano Res. 2016, 9, 787–799.CrossRefGoogle Scholar
  49. [49]
    Caravan, P.; Farrar, C. T.; Frullano, L.; Uppal, R. Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media Mol. Imaging 2009, 4, 89–100.CrossRefGoogle Scholar
  50. [50]
    Wang, L. R.; Lin, H. Y.; Ma, L. C.; Jin, J. B.; Shen, T. P.; Wei, R. X.; Wang, X. M.; Ai, H.; Chen, Z.; Gao, J. H. Albumin-based nanoparticles loaded with hydrophobic gadolinium chelates as T 1-T 2 dual-mode contrast agents for accurate liver tumor imaging. Nanoscale 2017, 9, 4516–4523.CrossRefGoogle Scholar
  51. [51]
    Pereira, G. A.; Ananias, D.; Rocha, J.; Amaral, V. S.; Muller, R. N.; Vander, Elst L.; Tóth, É.; Peters, J. A.; Geraldes, C. F. G. C. NMR relaxivity of Ln3+-based zeolite-type materials. J. Mater. Chem. 2005, 15, 3832–3837.CrossRefGoogle Scholar
  52. [52]
    Peters, J. A.; Djanashvili, K. Lanthanide loaded zeolites, clays, and mesoporous silica materials as MRI probes. Eur. J. Inorg. Chem. 2012, 2012, 1961–1974.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Nano-Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano-tech and Nano-bionicsChinese Academy of SciencesSuzhouChina
  2. 2.College of SciencesShanghai UniversityShanghaiChina
  3. 3.Institute of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
  4. 4.Institute of Nanoscience and NanotechnologyUniversity of Science and Technology of ChinaSuzhouChina

Personalised recommendations